
GT.M
Release Notes
V6.3-008

FIS
Page 2, August 16, 2019 FIS

Contact Information

GT.M Group
Fidelity National Information Services, Inc.
200 Campus Drive
Collegeville, PA 19426
United States of America

GT.M Support for customers: gtmsupport@fisglobal.com
Automated attendant for 24 hour support: +1 (484) 302-3248
Switchboard: +1 (484) 302-3160
Website: http://fis-gtm.com

Legal Notice

Copyright ©2019 Fidelity National Information Services, Inc. and/or its subsidiaries. All Rights Reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts and no Back-Cover Texts.

GT.M™ is a trademark of Fidelity National Information Services, Inc. Other trademarks are the property of their respective
owners.

This document contains a description of GT.M and the operating instructions pertaining to the various functions that
comprise the system. This document does not contain any commitment of FIS. FIS believes the information in this publication
is accurate as of its publication date; such information is subject to change without notice. FIS is not responsible for any errors
or defects.

Revision History

Revision 1.1 16 August 2019 In Platforms, change "Red Hat
Enterprise Linux 7.5" to "Red Hat
Enterprise Linux 7.6" as the supported
version.

Revision 1.0 27 June 2019 V6.3-009

http://fis-gtm.com
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt

GT.M V6.3-008
FIS

August 16, 2019, Page iii

Table of Contents
V6.3-009 ... 1

Overview .. 1
Conventions ... 1
Platforms .. 3

Platform support lifecycle ... 5
32- vs. 64-bit platforms ... 5

Call-ins and External Calls .. 5
Internationalization (Collation) .. 6
Environment Translation ... 6

Additional Installation Instructions .. 7
.. 7

Upgrading to GT.M V6.3-009 ... 9
Stage 1: Global Directory Upgrade ... 9
Stage 2: Database Files Upgrade ... 10
Stage 3: Replication Instance File Upgrade .. 12
Stage 4: Journal Files Upgrade ... 13
Stage 5: Trigger Definitions Upgrade ... 13
Downgrading to V5 or V4 ... 14

Managing M mode and UTF-8 mode .. 15
Setting the environment variable TERM ... 17
Installing Compression Libraries .. 17

Change History ... 19
V6.3-009 .. 19

Language .. 21
System Administration .. 23
Other .. 27
Error and Other Messages ... 29

INVGVPATQUAL ... 29
MLKREHASH ... 29
MUKEEPNODEC .. 29
MUKEEPNOTRUNC ... 29
MUKEEPPERCENT ... 29
MUTRUNCNOSPKEEP .. 30
NOJNLPOOL .. 30
NULLPATTERN .. 30

GTM V6.3-008
Page iv, August 16, 2019 FIS

GT.M V6.3-008
FIS

August 16, 2019, Page 1

V6.3-009

Overview

V6.3-009 adds several new qualifiers that provide more control over MUPIP REOG actions, a way to
extract journal files based on the value used by SET operations, improved behavior of -READ_ONLY
databases, protection for Receiver Servers from out-of-protocol messages, and a way to stop filtering on
a replicating instance. V6.3-009 also includes other fixes and enhancements. For more information, refer
to the Change History section.

Items marked with document new or different capabilities.

Please pay special attention to the items marked with the symbols as those document items that have
a possible impact on existing code, practice or process.

Note

Messages are not part of the GT.M API whose stability we strive to maintain. Make
sure that you review any automated scripting that parses GT.M messages.

Conventions

This document uses the following conventions:

Flag/Qualifiers -

Program Names or Functions upper case. For example, MUPIP BACKUP

Examples lower case. For example:
mupip backup -database ACN,HIST /backup

Reference Number A reference number is used to track software
enhancements and support requests.
It is enclosed between parentheses ().

Platform Identifier Where an item affects only specific platforms, the
platforms are listed in square brackets, e.g., [AIX]

Note

The term UNIX refers to the general sense of all platforms on which GT.M uses a
POSIX API. As of this date, this includes: AIX and GNU/Linux on x86 (32- and 64-
bits).

The following table summarizes the new and revised replication terminology and qualifiers.

V6.3-009 Conventions

FIS
Page 2, August 16, 2019 FIS

Pre V5.5-000 terminology Pre V5.5-000
qualifier

Current terminology Current qualifiers

originating instance or primary
instance

-rootprimary originating instance or
originating primary instance.

Within the context of a
replication connection between
two instances, an originating
instance is referred to as
source instance or source side.
For example, in an B<-A->C
replication configuration, A is
the source instance for B and C.

-updok
(recommended)

-rootprimary (still
accepted)

replicating instance (or
secondary instance) and
propagating instance

N/A for replicating
instance or
secondary instance.

-propagateprimary
for propagating
instance

replicating instance.

Within the context of a
replication connection between
two instances, a replicating
instance that receives updates
from a source instance is
referred to as receiving instance
or receiver side. For example,
in an B<-A->C replication
configuration, both B and C can
be referred to as a receiving
instance.

-updnotok

N/A N/A supplementary instance.

For example, in an A->P->Q
replication configuration, P is
the supplementary instance.
Both A and P are originating
instances.

-updok

Effective V6.0-000, GT.M documentation adopted IEC standard Prefixes for binary multiples. This
document therefore uses prefixes Ki, Mi and Ti (e.g., 1MiB for 1,048,576 bytes). Over time, we'll update
all GT.M documentation to this standard.

 denotes a new feature that requires updating the manuals.

 denotes a new feature or an enhancement that may not be upward compatible and may affect an
existing application.

 denotes deprecated messages.

 denotes revised messages.

 denotes added messages.

http://physics.nist.gov/cuu/Units/binary.html

Platforms V6.3-009

GTM V6.3-008
FIS

August 16, 2019, Page 3

Platforms

Over time, computing platforms evolve. Vendors obsolete hardware architectures. New versions
of operating systems replace old ones. We at FIS continually evaluate platforms and versions of
platforms that should be Supported for GT.M. In the table below, we document not only the ones that
are currently Supported for this release, but also alert you to our future plans given the evolution of
computing platforms. If you are an FIS customer, and these plans would cause you hardship, please
contact your FIS account executive promptly to discuss your needs.

Each GT.M release is extensively tested by FIS on a set of specific versions of operating systems on
specific hardware architectures (the combination of operating system and hardware architecture is
referred to as a platform). This set of specific versions is considered Supported. There may be other
versions of the same operating systems on which a GT.M release may not have been tested, but
on which the FIS GT.M Group knows of no reason why GT.M would not work. This larger set of
versions is considered Supportable. There is an even larger set of platforms on which GT.M may well
run satisfactorily, but where the FIS GT.M team lacks the knowledge to determine whether GT.M is
Supportable. These are considered Unsupported. Contact FIS GT.M Support with inquiries about your
preferred platform.

As of the publication date, FIS supports this release on the hardware and operating system versions
below. Contact FIS for a current list of Supported platforms. The reference implementation of the
encryption plugin has its own additional requirements, should you opt to use it as included with GT.M.

Platform Supported
Versions

Notes

IBM Power Systems AIX 7.1 TL 4, 7.2 Only 64-bit versions of AIX with POWER7 as the minimum
required CPU architecture level are Supported.

While GT.M supports both UTF-8 mode and M mode on
this platform, there are problems with the AIX ICU utilities
that prevent FIS from testing 4-byte UTF-8 characters as
comprehensively on this platform as we do on others.

Running GT.M on AIX 7.1 requires APAR IZ87564, a fix for the
POW() function, to be applied. To verify that this fix has been
installed, execute instfix -ik IZ87564.

AIX 7.1 TL 5 is Supportable.

Only the AIX jfs2 filesystem is Supported. Other filesystems,
such as jfs1 are Supportable, but not Supported. FIS strongly
recommends use of the jfs2 filesystem on AIX; use jfs1 only for
existing databases not yet migrated to a jfs2 filesystem.

x86_64 GNU/Linux Red Hat
Enterprise
Linux 7.6;
Ubuntu 16.04
LTS

To run 64-bit GT.M processes requires both a 64-bit kernel as
well as 64-bit hardware.

GT.M should also run on recent releases of other major Linux
distributions with a contemporary Linux kernel (2.6.32 or

V6.3-009 Platforms

FIS
Page 4, August 16, 2019 FIS

Platform Supported
Versions

Notes

later), glibc (version 2.12 or later) and ncurses (version 5.7 or
later).

Due to build optimization and library incompatibilities, GT.M
versions older than V6.2-000 are incompatible with glibc
2.24 and up. This incompatibility has not been reported by
a customer, but was observed on internal test systems that
use the latest Linux software distributions from Fedora (26),
Debian (unstable), and Ubuntu (17.10). In internal testing,
processes either hung or encountered a segmentation violation
(SIG-11) during operation. Customers upgrading to Linux
distributions that utilize glibc 2.24+ must upgrade their GT.M
version at the same time as or before the OS upgrade.

GT.M requires the libtinfo library. If it is not already installed
on your system, and is available using the package manager,
install it using the package manager. If a libtinfo package is not
available:

* Find the directory where libncurses.so is installed on your
system.

* Change to that directory and make a symbolic link to
libncurses.so.<ver> from libtinfo.so.<ver>. Note that some of
the libncurses.so entries may themselves be symbolic links,
for example, libncurses.so.5 may itself be a symbolic link to
libncurses.so.5.9.

To support the optional WRITE /TLS fifth argument (the
ability to provide / override options in the tlsid section of the
encryption configuration file), the reference implementation of
the encryption plugin requires libconfig 1.4.x.

Although GT.M itself does not require libelf, the geteuid
program used by the GT.M installation script requires libelf
(packaged as libelf1 on current Debian/Ubuntu distributions
and elfutils-libelf on RHEL 6 & 7).

Only the ext4 and xfs filesystems are Supported.
Other filesystems are Supportable, but not Supported.
Furthermore, if you use the NODEFER_ALLOCATE
feature, FIS strongly recommends that you use xfs.
If you must use NODEFER_ALLOCATE with ext4,
you must ensure that your kernel includes commit
d2dc317d564a46dfc683978a2e5a4f91434e9711 (search for
d2dc317d564a46dfc683978a2e5a4f91434e9711 at https://
www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3).
The Red Hat Bugzilla identifier for the bug is 1213487. With

https://www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3
https://www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3

32- vs. 64-bit platforms V6.3-009

GTM V6.3-008
FIS

August 16, 2019, Page 5

Platform Supported
Versions

Notes

NODEFER_ALLOCATE, do not use any filesystem other than
ext4 and a kernel with the fix, or xfs.

x86 GNU/Linux Debian 9
(Stretch)

This 32-bit version of GT.M runs on either 32- or 64-bit x86
platforms; we expect the x86_64 GNU/Linux version of GT.M
to be preferable on 64-bit hardware. Running a 32-bit GT.M on
a 64-bit GNU/Linux requires 32-bit libraries to be installed. The
CPU must have an instruction set equivalent to 586 (Pentium)
or better.

Please also refer to the notes above on x86_64 GNU/Linux.

Platform support lifecycle

FIS usually supports new operating system versions six months or so after stable releases are available
and we usually support each version for a two year window. GT.M releases are also normally supported
for two years after release. While FIS will attempt to provide support to customers in good standing for
any GT.M release and operating system version, our ability to provide support diminishes after the two
year window.

GT.M cannot be patched, and bugs are only fixed in new releases of software.

32- vs. 64-bit platforms

The same application code runs on both 32-bit and 64-bit platforms; however there are operational
differences between them (for example, auto-relink and the ability to use GT.M object code from shared
libraries exist only on 64-bit platforms). Please note that:

* You must compile the application code separately for each platform. Even though the M source code
is the same, the generated object modules are different - the object code differs between x86 and
x86_64.

* Parameter-types that interface GT.M with non-M code using C calling conventions must match
the data-types on their target platforms. Mostly, these parameters are for call-ins, external calls,
internationalization (collation) and environment translation, and are listed in the tables below. Note
that most addresses on 64-bit platforms are 8 bytes long and require 8 byte alignment in structures
whereas all addresses on 32-bit platforms are 4 bytes long and require 4-byte alignment in structures.

Call-ins and External Calls

Parameter type 32-Bit 64-bit Remarks

gtm_long_t 4-byte
(32-bit)

8-byte
(64-bit)

gtm_long_t is much the same as the C language long type.

V6.3-009 32- vs. 64-bit platforms

FIS
Page 6, August 16, 2019 FIS

Parameter type 32-Bit 64-bit Remarks

gtm_ulong_t 4-byte 8-byte gtm_ulong_t is much the same as the C language unsigned
long type.

gtm_int_t 4-byte 4-byte gtm_int_t has 32-bit length on all platforms.

gtm_uint_t 4-byte 4-byte gtm_uint_t has 32-bit length on all platforms

Caution

If your interface uses gtm_long_t or gtm_ulong_t types but your interface code uses
int or signed int types, failure to revise the types so they match on a 64-bit platform
will cause the code to fail in unpleasant, potentially dangerous, and hard to diagnose
ways.

Internationalization (Collation)

Parameter type 32-Bit 64-bit Remarks

gtm_descriptor in
gtm_descript.h

4-byte 8-byte Although it is only the address within these types that
changes, the structures may grow by up to 8 bytes as a
result of compiler padding to meet platform alignment
requirements.

Important

Assuming other aspects of code are 64-bit capable, collation routines should require
only recompilation.

Environment Translation

Parameter type 32-Bit 64-bit Remarks

gtm_string_t type in
gtmxc_types.h

4-byte 8-byte Although it is only the address within these types that
changes, the structures may grow by up to 8 bytes as a
result of compiler padding to meet platform alignment
requirements.

Important

Assuming other aspects of code are 64-bit capable, environment translation routines
should require only recompilation.

Additional Installation Instructions V6.3-009

GTM V6.3-008
FIS

August 16, 2019, Page 7

Additional Installation Instructions

To install GT.M, see the "Installing GT.M" section in the GT.M Administration and Operations
Guide. For minimal down time, upgrade a current replicating instance and restart replication. Once
that replicating instance is current, switch it to become the originating instance. Upgrade the prior
originating instance to become a replicating instance, and perform a switchover when you want it to
resume an originating primary role.

Caution

Never replace the binary image on disk of any executable file while it is in use by
an active process. It may lead to unpredictable results. Depending on the operating
system, these results include but are not limited to denial of service (that is, system
lockup) and damage to files that these processes have open (that is, database
structural damage).

* FIS strongly recommends installing each version of GT.M in a separate (new) directory, rather than
overwriting a previously installed version. If you have a legitimate need to overwrite an existing
GT.M installation with a new version, you must first shut down all processes using the old version.
FIS suggests installing GT.M V6.3-009 in a Filesystem Hierarchy Standard compliant location
such as /usr/lib/fis-gtm/V6.3-009_arch (for example, /usr/lib/fis-gtm/V6.3-009_x86 on 32-bit Linux
systems). A location such as /opt/fis-gtm/V6.3-009_arch would also be appropriate. Note that the
arch suffix is especially important if you plan to install 32- and 64-bit versions of the same release of
GT.M on the same system.

* Use the appropriate MUPIP command (e.g. ROLLBACK, RECOVER, RUNDOWN) of the old GT.M
version to ensure all database files are cleanly closed.

* Make sure gtmsecshr is not running. If gtmsecshr is running, first stop all GT.M processes including
the DSE, LKE and MUPIP utilities and then perform a MUPIP STOP pid_of_gtmsecshr.

* Starting with V6.2-000, GT.M no longer supports the use of the deprecated $gtm_dbkeys and the
master key file it points to for database encryption. To convert master files to the libconfig format,

please click to download the CONVDBKEYS.m program and follow instructions in the comments
near the top of the program file. You can also download CONVDBKEYS.m from http://tinco.pair.com/
bhaskar/gtm/doc/articles/downloadables/CONVDBKEYS.m. If you are using $gtm_dbkeys for
database encryption, please convert master key files to libconfig format immediately after upgrading
to V6.2-000 or later. Also, modify your environment scripts to include the use of gtmcrypt_config
environment variable.

Recompile

* Recompile all M and C source files.

http://tinco.pair.com/bhaskar/gtm/doc/articles/downloadables/CONVDBKEYS.m

V6.3-009 Additional Installation Instructions

FIS
Page 8, August 16, 2019 FIS

Rebuild Shared Libraries or Images

* Rebuild all Shared Libraries after recompiling all M and C source files.

* If your application is not using object code shared using GT.M's auto-relink functionality, please
consider using it.

Compiling the Reference Implementation Plugin

If you plan to use database encryption, TLS replication, or TLS sockets, you must compile the reference
implementation plugin to match the shared library dependencies unique to your platform. The
instructions for compiling the Reference Implementation plugin are as follows:

1. Install the development headers and libraries for libgcrypt, libgpgme, libconfig, and libssl. On
Linux, the package names of development libraries usually have a suffix such as -dev or -devel and
are available through the package manager. For example, on Ubuntu_x86_64 a command like the
following installs the required development libraries:

sudo apt-get install libgcrypt11-dev libgpgme11-dev libconfig-dev libssl-dev

Note that the package names may vary by distribution / version.

2. Unpack $gtm_dist/plugin/gtmcrypt/source.tar to a temporary directory.

mkdir /tmp/plugin-build
cd /tmp/plugin-build
cp $gtm_dist/plugin/gtmcrypt/source.tar .
tar -xvf source.tar

3. Follow the instructions in the README.

* Open Makefile with your editor; review and edit the common header (IFLAGS) and library paths
(LIBFLAGS) in the Makefile to reflect those on your system.

* Define the gtm_dist environment variable to point to the absolute path for the directory where
you have GT.M installed

* Copy and paste the commands from the README to compile and install the encryption plugin
with the permissions defined at install time

Caution

These are separate steps to compile the encryption plugin for GT.M versions
V5.3-004 through V6.3-000 when OpenSSL 1.1 is installed and OpenSSL 1.0.x libraries
are still available.

* Download the most recent OpenSSL 1.0.x version

* Compile and install (default installs to /usr/local/ssl)

Upgrading to GT.M V6.3-009 V6.3-009

GTM V6.3-008
FIS

August 16, 2019, Page 9

./config && make install

* Adjust the configuration : Move the newly installed libraries out of the way

mv /usr/local/ssl/lib /usr/local/ssl/lib.donotuse

* Adjust the configuration : Create another /usr/local/ssl/lib and symlink the
existing 1.0.x library into it as the default. This ensures that the encryption plugin
is compiled using the compatible OpenSSL 1.0.x library. Adjust the path below as
necessary.

mkdir /usr/local/ssl/lib && ln -s /path/to/existing/libssl.so.1.0.x /usr/
local/ssl/libssl.so

* Recompile the encryption plugin following the above directions.

* Remove /usr/local/ssl/lib.donotuse to avoid future complications.

Upgrading to GT.M V6.3-009

The GT.M database consists of four types of components- database files, journal files, global directories,
and replication instance files. The format of some database components differs for 32-bit and 64-bit
GT.M releases for the x86 GNU/Linux platform.

GT.M upgrade procedure for V6.3-009 consists of 5 stages:

* Stage 1: Global Directory Upgrade

* Stage 2: Database Files Upgrade

* Stage 3: Replication Instance File Upgrade

* Stage 4: Journal Files Upgrade

* Stage 5: Trigger Definitions Upgrade

Read the upgrade instructions of each stage carefully. Your upgrade procedure for GT.M V6.3-009
depends on your GT.M upgrade history and your current version.

Stage 1: Global Directory Upgrade

FIS strongly recommends you back up your Global Directory file before upgrading. There is no one-step
method for downgrading a Global Directory file to an older format.

To upgrade from any previous version of GT.M:

* Open your Global Directory with the GDE utility program of GT.M V6.3-009.

* Execute the EXIT command. This command automatically upgrades the Global Directory.

V6.3-009 Upgrading to GT.M V6.3-009

FIS
Page 10, August 16, 2019 FIS

To switch between 32- and 64-bit global directories on the x86 GNU/Linux platform:

1. Open your Global Directory with the GDE utility program on the 32-bit platform.

2. On GT.M versions that support SHOW -COMMAND, execute SHOW -COMMAND -FILE=file-name.
This command stores the current Global Directory settings in the specified file.

3. On GT.M versions that do not support GDE SHOW -COMMAND, execute the SHOW -ALL
command. Use the information from the output to create an appropriate command file or use it as a
guide to manually enter commands in GDE.

4. Open GDE on the 64-bit platform. If you have a command file from 2. or 3., execute @file-name
and then run the EXIT command. These commands automatically create the Global Directory.
Otherwise use the GDE output from the old Global Directory and apply the settings in the new
environment.

An analogous procedure applies in the reverse direction.

If you inadvertently open a Global Directory of an old format with no intention of upgrading it, execute
the QUIT command rather than the EXIT command.

If you inadvertently upgrade a global directory, perform the following steps to downgrade to an old
GT.M release:

* Open the global directory with the GDE utility program of V6.3-009.

* Execute the SHOW -COMMAND -FILE=file-name command. This command stores the current
Global Directory settings in the file-name command file. If the old version is significantly out of date,
edit the command file to remove the commands that do not apply to the old format. Alternatively,
you can use the output from SHOW -ALL or SHOW -COMMAND as a guide to manually enter
equivalent GDE commands for the old version.

Stage 2: Database Files Upgrade

To upgrade from GT.M V6*:

There is no explicit procedure to upgrade a V6 database file when upgrading to a newer V6 version.
After upgrading the Global Directory, opening a V6 database with a newer V6 GT.M process
automatically upgrades fields in the database fileheader.

To upgrade from GT.M V5.0*/V5.1*/V5.2*/V5.3*/V5.4*/V5.5:

A V6 database file is a superset of a V5 database file and has potentially longer keys and records.
Therefore, upgrading a database file requires no explicit procedure. After upgrading the Global
Directory, opening a V5 database with a V6 process automatically upgrades fields in the database
fileheader.

A database created with V6 supports up to 992Mi blocks and is not backward compatible. V6 databases
that take advantage of V6 limits on key size and records size cannot be downgraded. Use MUPIP
DOWNGRADE -VERSION=V5 to downgrade a V6 database back to V5 format provided it meets

Upgrading to GT.M V6.3-009 V6.3-009

GTM V6.3-008
FIS

August 16, 2019, Page 11

the database downgrade requirements. For more information on downgrading a database, refer to
Downgrading to V5 or V4.

Important

A V5 database that has been automatically upgraded to V6 can perform all GT.M
V6.3-009 operations. However, that database can only grow to the maximum size
of the version in which it was originally created. A database created on V5.0-000
through V5.3-003 has maximum size of 128Mi blocks. A database created on V5.4-000
through V5.5-000 has a maximum size of 224Mi blocks. A database file created with
V6.0-000 (or above) can grow up to a maximum of 992Mi blocks. This means that, for
example, the maximum size of a V6 database file having 8KiB block size is 7936GiB
(8KiB*992Mi).

Important

In order to perform a database downgrade you must perform a MUPIP INTEG -
NOONLINE. If the duration of the MUPIP INTEG exceeds the time allotted for an
upgrade you should rely on a rolling upgrade scheme using replication.

If your database has any previously used but free blocks from an earlier upgrade cycle (V4 to V5),
you may need to execute the MUPIP REORG -UPGRADE command. If you have already executed the
MUPIP REORG -UPGRADE command in a version prior to V5.3-003 and if subsequent versions cannot
determine whether MUPIP REORG -UPGRADE performed all required actions, it sends warnings to
the syslog requesting another run of MUPIP REORG -UPGRADE. In that case, perform any one of the
following steps:

* Execute the MUPIP REORG -UPGRADE command again, or

* Execute the DSE CHANGE -FILEHEADER -FULLY_UPGRADED=1 command to stop the warnings.

Caution

Do not run the DSE CHANGE -FILEHEADER -FULLY_UPGRADED=1 command
unless you are absolutely sure of having previously run a MUPIP REORG -
UPGRADE from V5.3-003 or later. An inappropriate DSE CHANGE -FILEHEADE -
FULLY_UPGRADED=1 may lead to database integrity issues.

You do not need to run MUPIP REORG -UPGRADE on:

* A database that was created by a V5 MUPIP CREATE

* A database that has been completely processed by a MUPIP REORG -UPGRADE from V5.3-003 or
later.

For additional upgrade considerations, refer to Database Compatibility Notes.

To upgrade from a GT.M version prior to V5.000:

V6.3-009 Upgrading to GT.M V6.3-009

FIS
Page 12, August 16, 2019 FIS

You need to upgrade your database files only when there is a block format upgrade from V4 to V5.
However, some versions, for example, database files which have been initially been created with V4
(and subsequently upgraded to a V5 format) may additionally need a MUPIP REORG -UPGRADE
operation to upgrade previously used but free blocks that may have been missed by earlier upgrade
tools.

* Upgrade your database files using in-place or traditional database upgrade procedure depending
on your situation. For more information on in-place/traditional database upgrade, see Database
Migration Technical Bulletin.

* Run the MUPIP REORG -UPGRADE command. This command upgrades all V4 blocks to V5 format.

Note

Databases created with GT.M releases prior to V5.0-000 and upgraded to a V5 format
retain the maximum size limit of 64Mi (67,108,864) blocks.

Database Compatibility Notes

* Changes to the database file header may occur in any release. GT.M automatically upgrades database
file headers as needed. Any changes to database file headers are upward and downward compatible
within a major database release number, that is, although processes from only one GT.M release can
access a database file at any given time, processes running different GT.M releases with the same
major release number can access a database file at different times.

* Databases created with V5.3-004 through V5.5-000 can grow to a maximum size of 224Mi
(234,881,024) blocks. This means, for example, that with an 8KiB block size, the maximum database
file size is 1,792GiB; this is effectively the size of a single global variable that has a region to itself and
does not itself span regions; a database consists of any number of global variables. A database created
with GT.M versions V5.0-000 through V5.3-003 can be upgraded with MUPIP UPGRADE to increase
the limit on database file size from 128Mi to 224Mi blocks.

* Databases created with V5.0-000 through V5.3-003 have a maximum size of 128Mi (134, 217,728)
blocks. GT.M versions V5.0-000 through V5.3-003 can access databases created with V5.3-004 and
later as long as they remain within a 128Mi block limit.

* Database created with V6.0-000 or above have a maximum size of 1,040,187,392(992Mi) blocks.

* For information on downgrading a database upgraded from V6 to V5, refer to: Downgrading to V5 or
V4.

Stage 3: Replication Instance File Upgrade

V6.3-009 does not require new replication instance files if you are upgrading from V5.5-000. However,
V6.3-009 requires new replication instance files if you are upgrading from any version prior to
V5.5-000. Instructions for creating new replication instance files are in the Database Replication chapter
of the GT.M Administration and Operations Guide. Shut down all Receiver Servers on other instances

http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_Database_Migration.html
http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_Database_Migration.html
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch07.html

Upgrading to GT.M V6.3-009 V6.3-009

GTM V6.3-008
FIS

August 16, 2019, Page 13

that are to receive updates from this instance, shut down this instance Source Server(s), recreate the
instance file, restart the Source Server(s) and then restart any Receiver Server for this instance with the
-UPDATERESYNC qualifier.

Note

Without the -UPDATERESYNC qualifier, the replicating instance synchronizes with
the originating instance using state information from both instances and potentially
rolling back information on the replicating instance. The -UPDATERESYNC qualifier
declares the replicating instance to be in a wholesome state matching some prior (or
current) state of the originating instance; it causes MUPIP to update the information
in the replication instance file of the originating instance and not modify information
currently in the database on the replicating instance. After this command, the
replicating instance catches up to the originating instance starting from its own
current state. Use -UPDATERESYNC only when you are absolutely certain that
the replicating instance database was shut down normally with no errors, or
appropriately copied from another instance with no errors.

Important

You must always follow the steps described in the Database Replication chapter of
the GT.M Administration and Operations Guide when migrating from a logical dual
site (LDS) configuration to an LMS configuration, even if you are not changing GT.M
releases.

Stage 4: Journal Files Upgrade

On every GT.M upgrade:

* Create a fresh backup of your database.

* Generate new journal files (without back-links).

Important

This is necessary because MUPIP JOURNAL cannot use journal files from a release
other than its own for RECOVER, ROLLBACK, or EXTRACT.

Stage 5: Trigger Definitions Upgrade

If you are upgrading from V5.4-002A/V5.4-002B/V5.5-000 to V6.3-009 and you have database triggers
defined in V6.2-000 or earlier, you need to ensure that your trigger definitions are wholesome in the
older version and then run MUPIP TRIGGER -UPGRADE. If you have doubts about the wholesomeness
of the trigger definitions in the old version use the instructions below to capture the definitions delete

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch07.html

V6.3-009 Upgrading to GT.M V6.3-009

FIS
Page 14, August 16, 2019 FIS

them in the old version (-*), run MUPIP TRIGGER -UPGRADE in V6.3-009 and then reload them as
described below.

You need to extract and reload your trigger definitions only if you are upgrading from V5.4-000/
V5.4-000A/V5.4-001 to V6.3-009 or if you find your prior version trigger definitions have problems.
For versions V5.4-000/V5.4-000A/V5.4-001 this is necessary because multi-line XECUTEs for triggers
require a different internal storage format for triggers which makes triggers created in V5.4-000/
V5.4-000A/V5.4-001 incompatible with V5.4-002/V5.4-002A/V5.4-002B/V5.5-000/V6.0-000/V6.0-001/
V6.3-009.

To extract and reapply the trigger definitions on V6.3-009 using MUPIP TRIGGER:

1. Using the old version, execute a command like mupip trigger -select="*" trigger_defs.trg. Now,
the output file trigger_defs.trg contains all trigger definitions.

2. Place -* at the beginning of the trigger_defs.trg file to remove the old trigger definitions.

3. Using V6.3-009, run mupip trigger -triggerfile=trigger_defs.trg to reload your trigger
definitions.

To extract and reload trigger definitions on a V6.3-009 replicating instance using $ZTRIGGER():

1. Shut down the instance using the old version of GT.M.

2. Execute a command like mumps -run %XCMD 'i $ztrigger("select")' > trigger_defs.trg . Now,
the output file trigger_defs.trg contains all trigger definitions.

3. Turn off replication on all regions.

4. Run mumps -run %XCMD 'i $ztrigger("item","-*") to remove the old trigger definitions.

5. Perform the upgrade procedure applicable for V6.3-009.

6. Run mumps -run %XCMD 'if $ztrigger("file","trigger_defs.trg")' to reapply your trigger
definitions.

7. Turn replication on.

8. Connect to the originating instance.

Note

Reloading triggers renumbers automatically generated trigger names.

Downgrading to V5 or V4

You can downgrade a GT.M V6 database to V5 or V4 format using MUPIP DOWNGRADE.

Starting with V6.0-000, MUPIP DOWNGRADE supports the -VERSION qualifier with the following
format:

Managing M mode and UTF-8 mode V6.3-009

GTM V6.3-008
FIS

August 16, 2019, Page 15

MUPIP DOWNGRADE -VERSION=[V5|V4]

-VERSION specifies the desired version for the database header.

To qualify for a downgrade from V6 to V5, your database must meet the following
requirements:

1. The database was created with a major version no greater than the target version.

2. The database does not contain any records that exceed the block size (spanning nodes).

3. The sizes of all the keys in database are less than 256 bytes.

4. There are no keys present in database with size greater than the Maximum-Key-Size specification in
the database header, that is, Maximum-Key-Size is assured.

5. The maximum Record size is small enough to accommodate key, overhead, and value within a block.

To verify that your database meets all of the above requirements, execute MUPIP INTEG -NOONLINE.
Note that the integrity check requires the use of -NOONLINE to ensure no concurrent updates
invalidate the above requirements. Once assured that your database meets all the above requirements,
MUPIP DOWNGRADE -VERSION=V5 resets the database header to V5 elements which makes it
compatible with V5 versions.

To qualify for a downgrade from V6 to V4, your database must meet the same downgrade requirements
that are there for downgrading from V6 to V5.

If your database meets the downgrade requirements, perform the following steps to downgrade to V4:

1. In a GT.M V6.3-009 environment:

a. Execute MUPIP SET -VERSION=v4 so that GT.M writes updates blocks in V4 format.

b. Execute MUPIP REORG -DOWNGRADE to convert all blocks from V6 format to V4 format.

2. Bring down all V6 GT.M processes and execute MUPIP RUNDOWN -FILE on each database file to
ensure that there are no processes accessing the database files.

3. Execute MUPIP DOWNGRADE -VERSION=V4 to change the database file header from V6 to V4.

4. Restore or recreate all the V4 global directory files.

5. Your database is now successfully downgraded to V4.

Managing M mode and UTF-8 mode

With International Components for Unicode (ICU) version 3.6 or later installed, GT.M's UTF-8 mode
provides support for Unicode® (ISO/IEC-10646) character strings. On a system that does not have ICU
3.6 or later installed, GT.M only supports M mode.

On a system that has ICU installed, GT.M optionally installs support for both M mode and UTF-8
mode, including a utf8 subdirectory of the directory where GT.M is installed. From the same source

http://icu-project.org

V6.3-009 Managing M mode and UTF-8 mode

FIS
Page 16, August 16, 2019 FIS

file, depending upon the value of the environment variable gtm_chset, the GT.M compiler generates
an object file either for M mode or UTF-8 mode. GT.M generates a new object file when it finds both
a source and an object file, and the object predates the source file and was generated with the same
setting of $gtm_chset/$ZCHset. A GT.M process generates an error if it encounters an object file
generated with a different setting of $gtm_chset/$ZCHset than that processes' current value.

Always generate an M object module with a value of $gtm_chset/$ZCHset matching the value
processes executing that module will have. As the GT.M installation itself contains utility programs
written in M, their object files also conform to this rule. In order to use utility programs in both
M mode and UTF-8 mode, the GT.M installation ensures that both M and UTF-8 versions of object
modules exist, the latter in the utf8 subdirectory. This technique of segregating the object modules by
their compilation mode prevents both frequent recompiles and errors in installations where both modes
are in use. If your installation uses both modes, consider a similar pattern for structuring application
object code repositories.

GT.M is installed in a parent directory and a utf8 subdirectory as follows:

* Actual files for GT.M executable programs (mumps, mupip, dse, lke, and so on) are in the parent
directory, that is, the location specified for installation.

* Object files for programs written in M (GDE, utilities) have two versions - one compiled with support
for UTF-8 mode in the utf8 subdirectory, and one compiled without support for UTF-8 mode in the
parent directory. Installing GT.M generates both versions of object files, as long as ICU 3.6 or greater
is installed and visible to GT.M when GT.M is installed, and you choose the option to install UTF-8
mode support. Note that on 64-bit versions of GT.M, the object code is in shared libraries, rather than
individual files in the directory.

* The utf8 subdirectory has files called mumps, mupip, dse, lke, and so on, which are relative symbolic
links to the executables in the parent directory (for example, mumps is the symbolic link ../mumps).

* When a shell process sources the file gtmprofile, the behavior is as follows:

* If $gtm_chset is "m", "M" or undefined, there is no change from the previous GT.M versions to the
value of the environment variable $gtmroutines.

* If $gtm_chset is "UTF-8" (the check is case-insensitive),

* $gtm_dist is set to the utf8 subdirectory (that is, if GT.M is installed in /usr/lib/fis-gtm/
gtm_V6.3-009_i686, then gtmprofile sets $gtm_dist to /usr/lib/fis-gtm/gtm_V6.3-009_i686/utf8).

* On platforms where the object files have not been placed in a libgtmutil.so shared library,
the last element of $gtmroutines is $gtm_dist($gtm_dist/..) so that the source files in the
parent directory for utility programs are matched with object files in the utf8 subdirectory. On
platforms where the object files are in libgtmutil.so, that shared library is the one with the object
files compiled in the mode for the process.

For more information on gtmprofile, refer to the Basic Operations chapter of GT.M Administration and
Operations Guide.

Although GT.M uses ICU for UTF-8 operation, ICU is not FIS software and FIS does not support ICU.

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch03.html

Setting the environment variable TERM V6.3-009

GTM V6.3-008
FIS

August 16, 2019, Page 17

Setting the environment variable TERM

The environment variable TERM must specify a terminfo entry that accurately matches the terminal
(or terminal emulator) settings. Refer to the terminfo man pages for more information on the terminal
settings of the platform where GT.M needs to run.

* Some terminfo entries may seem to work properly but fail to recognize function key sequences or
fail to position the cursor properly in response to escape sequences from GT.M. GT.M itself does
not have any knowledge of specific terminal control characteristics. Therefore, it is important to
specify the right terminfo entry to let GT.M communicate correctly with the terminal. You may need
to add new terminfo entries depending on your specific platform and implementation. The terminal
(emulator) vendor may also be able to help.

* GT.M uses the following terminfo capabilities. The full variable name is followed by the capname in
parenthesis:

auto_right_margin(am), clr_eos(ed), clr_eol(el), columns(cols), cursor_address(cup),
 cursor_down(cud1), cursor_left(cub1), cursor_right(cuf1), cursor_up(cuu1),
 eat_newline_glitch(xenl), key_backspace(kbs), key_dc(kdch1),key_down(kcud1),
 key_left(kcub1), key_right(kcuf1), key_up(kcuu1), key_insert(kich1),
 keypad_local(rmkx),keypad_xmit(smkx), lines(lines).

GT.M sends keypad_xmit before terminal reads for direct mode and READs (other than READ *) if
EDITING is enabled. GT.M sends keypad_local after these terminal reads.

Installing Compression Libraries

If you plan to use the optional compression facility for replication, you must provide the compression
library. The GT.M interface for compression libraries accepts the zlib compression libraries without
any need for adaptation. These libraries are included in many UNIX distributions and are downloadable
from the zlib home page. If you prefer to use other compression libraries, you need to configure or
adapt them to provide the same API as that provided by zlib.

If a package for zlib is available with your operating system, FIS suggests that you use it rather than
building your own.

By default, GT.M searches for the libz.so shared library in the standard system library directories (for
example, /usr/lib, /usr/local/lib, /usr/local/lib64). If the shared library is installed in a non-standard
location, before starting replication, you must ensure that the environment variable LIBPATH (AIX)
or LD_LIBRARY_PATH (GNU/Linux) includes the directory containing the library. The Source and
Receiver Server link the shared library at runtime. If this fails for any reason (such as file not found,
or insufficient authorization), the replication logic logs a DLLNOOPEN error and continues with no
compression.

Although GT.M uses a library such as zlib for compression, such libraries are not FIS software and FIS
does not support any compression libraries.

http://www.zlib.net

GTM V6.3-008
Page 18, August 16, 2019 FIS

GT.M V6.3-008
FIS

August 16, 2019, Page 19

Change History

V6.3-009

Fixes and enhancements specific to V6.3-009:

Id Prior Id Category Summary

GTM-6631 C9K06-003282 Admin MUPIP REORG -NOCOALESCE, -NOSPLIT
and -NOSWAP to selectively disable its
actions

GTM-8203 - Admin MUPIP REORG -TRUNCATE support for -
KEEP=|blocks|percent%|

GTM-8706 - Admin MUPIP REPLICATE -
STOPRECEIVERFILTER disables any active
receiver filter

GTM-8901 - Admin MUPIP JOURNAL -EXTRACT -GVPATFILE
specifies a patterns list to restrict the
extract output to matching SET records.

GTM-8921 - Admin GT.M cleans up IPC semaphores for -
READ_ONLY (MM) database files at the
first opportunity

GTM-9037 - Admin Additional reporting of unusual journaling
issues to the operator log

GTM-9044 - Admin Enhanced message in case of gtmsecshr
misconfiguration

GTM-9113 - Language Fix XECUTE of a literal FOR with a control
variable termination value

GTM-9114 - Other Prevent GTMCHECK from auto-zlink of an
renamed object

GTM-9115 - Other Minor performance improvements to the
radix conversion utilities

GTM-9116 - Admin Installation script explicitly applies
permissions to libgtmutil.so

GTM-9119 - Language Handle rare LOCK condition

GTM-9123 - Language Fix a an odd case of a potential incorrect
result with gtm_side_effects compilation

Change History V6.3-009

FIS
Page 20, August 16, 2019 FIS

Id Prior Id Category Summary

GTM-9126 - Language ZSTEP OVER stops after returning from an
a line containing an XECUTE or indirection

GTM-9134 - Other Protect a Receiver Server against spurious
messages while waiting for a connection

GTM-9142 - Admin Please see GTM-6631.

GTM-9144 - Admin Fix to detection of GTM-E-
DBDUPNULCOL error

GTM-9145 - Other ^%RI and ^%RO handle longer lines

GTM-9149 - Language GT.M protections against invalid returns
from external calls ($&)

GTM-9152 - Language Fix error compiler handling of invalid
literal code in an XECUTE argument

GTM-9155 - Language Fix $SELECT() handling of certain nestings
that included extrinsics

GT.M V6.3-008
FIS

August 16, 2019, Page 21

Language

* After XECUTE of a literal argument containing a FOR with a termination value for a control variable
argument, GT.M processes the rest of the line; due to an issue with the optimization associated with
GTM-8579 in V6.3-001, GT.M ignored anything on the line after such a literal argument. (GTM-9113)

* GT.M handles extremely rare issues with the LOCK hash table appropriately. In releases starting
with V6.3-006, GT.M processes encountering this condition could consume large amounts of
memory, wait indefinitely for a lock which is not held by another process, or terminate with a
segmentation violation (SIG-11). (GTM-9119)

* GT.M produces a correct result with gtm_side_effect set to one (1) or (two 2) for a Boolean
expression with a superfluous leading plus (+) or minus (-) sign on a parenthetical sub-expression
containing at least one non-relational Boolean operator, and an extrinsic someplace other than
the first element in the Boolean expression. Versions V6.3-003 through V6.3-008 could produce an
incorrect result. (GTM-9123)

* ZSTEP OVER stops after returning from an a line containing an XECUTE or indirection; previously a
ZSTEP OVER in such a situation acted like a ZSTEP OUTOF. (GTM-9126)

* To protect the process, GT.M turns any return values containing a null pointer to an empty string
value and, for the first occurrence in a process, sends one XCRETNULLREF syslog message. Starting
in GT.M V6.3-006 (GTM-8998), external calls that returned null pointers produced a XCRETNULLREF
error. If an external call sets a gtm_string length to a negative value, to protect the process, GT.M
turns any return with a negative length to an empty string value and, for the first occurrence in a
process, sends one XCCONVERT syslog message. Previously, such negative string lengths could lead
to out-of-design conditionals like a segmentation violation (SIG-11). (GTM-9149)

* The GT.M compiler manages incorrect literal code in an XECUTE argument appropriately; in
V6.3-008 due to a regression caused by GTM-9079, such a syntax could either cause a hang or a
segmentation violation (SIG-11). (GTM-9152)

* $SELECT() appropriately handles certain unusual cases involving extrinsics and nesting; previously
these could cause a GTMASSERT2, a segmentation violation (SIG-11), or even an incorrect result.
(GTM-9155)

GTM V6.3-008
Page 22, August 16, 2019 FIS

GT.M V6.3-008
FIS

August 16, 2019, Page 23

System Administration

* MUPIP REORG recognizes the -NOCOALESCE, -NOSPLIT and -NOSWAP qualifiers, which
respectively disable: increases in block density, decreases in block density, and attempting to create
physical adjacency. These are new options. (GTM-6631)

* MUPIP REORG -TRUNCATE recognizes the -KEEP=|blocks|percent%| qualifier where the argument
to -KEEP specifies either a number of database blocks or a percentage (0-99) followed by a percent-
sign (%) of the starting total blocks to exclude from truncation. Previously, a truncation returned all
of the available free space. (GTM-8203)

* MUPIP REPLICATE -RECEIVER -STOPRECEIVERFILTER turns off any active filter on the
Receiver Server without turning off the Receiver Server; previously this qualifier was not
supported. -STOPRECEIVERFILTER is not compatible with any other -RECEIVER qualifier. Using -
STOPRECEIVERFILTER, when no filter is active, returns a non-success return code. (GTM-8706)

* The -GVPATFILE qualifier for MUPIP JOURNAL -EXTRACT specifies the location of a pattern file
containing a list of patterns for all types of SET journal records that MUPIP JOURNAL -EXTRACT
should include in, or exclude from, its output. Use this qualifier to restrict the output of a journal
extract by global node content (value) in any SET record types). The format of the -GVPATFILE
qualifier is:

-GVPATFILE=path-to-pattern-file

The following details the syntax of the pattern file and examples of how MUPIP JOURNAL -
EXTRACT responds:

* When a pattern entry starts with a tilda sign (~), -GVPATFILE excludes the matching global node
values from the JOURNAL EXTRACT file; for example: ~(not this value) excludes all global SETs
that exactly match "not this value"

* When the pattern does not start a tilda sign (~) or contain an asterisk (*), MUPIP JOURNAL -
EXTRACT reports only those global SET values that exactly match the pattern. For example: "
match this value"

* When a pattern contains an asterisk (*), MUPIP JOURNAL -EXTRACT expands it and tries to
match multiple characters; for example: "*a*b*" matches values like "ab", "..ab", "ab.. ", "a..b", "
aaabbabb", and so on but does not match values like "ba", "aaa", "bbb", and so on

* When a pattern contains a percentage (%), MUPIP JOURNAL -EXTRACT matches it for one
character; for example: "a%b%" matches values like "a1b1" but does not match values like "ab",
"aabbc", and so on

* A pattern can be enclosed within parentheses "()" for readability

* When you use any of the following characters in the pattern, you can escape them by preceding
the character with "\"; for example: " a**b" matches values like "a*..b" but not "a..b".:

System Administration

FIS
Page 24, August 16, 2019 FIS

* "(" and "~" at the beginning

* ")" at the end

* "\", "*" and "%" occurring anywhere within the pattern

* In UTF-8 mode, the contents of the pattern file can include Unicode characters

* If a pattern file does not exist, MUPIP JOURNAL -EXTRACT produces the FILEOPENFAIL error
and returns a non-zero exit code to the shell

You can specify multi-line entries in a pattern file. With multiple lines, MUPIP JOURNAL EXTRACT
produces those SET records that match any one of the pattern lines with the exception of exclusion
patterns (those starting ~) which take precedence over other non-exclusion patterns.

Here are a few examples of the pattern file, and how MUPIP JOURNAL -EXTRACT matches the
pattern file values:

> cat matchA_notAA.txt
~(*AA*)
A
> $gtm_dist/mupip journal -extract -gvpatfile=matchA_notAA.txt -forward "*"
Extracts global values that contain at least one "A", but not "AA".

> cat ending22.txt
notmatching
*22
> $gtm_dist/mupip journal -extract -gvpatfile=ending22.txt -forward "*"
Extracts global values ending with "22", even when there are no globals containing
 "notmatching".

> cat startswithsplchars.txt
**
\~*
> $gtm_dist/mupip journal -extract -gvpatfile=matchA_notAA.txt -forward "*"
Extracts global values that start with a "*" or a "~".

(GTM-8901)

* GT.M releases the semaphore IPCs associated with the region "ftok" and any associated statsDB
when closing a file with the READ ONLY characteristic; previously it did not. Remember the
READ_ONLY characteristic only applies to MM access method regions. Note that because of the
way GT.M handles semaphores for READ_ONLY database files it does not enforce standalone access
for setting the characteristic from READ_ONLY to NOREAD_ONLY. However, making a change
from READ_ONLY to NOREAD_ONLY without standalone access will likely cause problems, such
as errors on termination and failure to release IPC resources that would require additional MUPIP
commands to clean up. Therefore, FIS recommends using other means such as the following based on
fuser return of one (1) to verify there are no processes are accessing the file:

System Administration

GTM V6.3-008
FIS

August 16, 2019, Page 25

fuser <db-filename> | awk -F: '{if(length($NF))exit(1)}' && $gtm_dist/mupip set -
noread_only -file <db-filename>

In addition, argumentless MUPIP RUNDOWN sends fewer cautions when encountering conditions
created by use of READ_ONLY database files. (GTM-8921)

* When GT.M encounters certain problems with journaling that generate errors, and possibly cause an
Instance Freeze in lieu of shutting down journaling, it ensures there is a message about the error in
the syslog; previously there were cases when it did not do so. (GTM-9037)

* When gtmsecshr is misconfigured, an attempt by a process to start it produces a message with some
guidance. Note that security policy indicates that because gtmsecshr is a secured component detailed
information is not appropriate. Previously the message was less than optimally helpful. (GTM-9044)

* The GT.M installation script explicitly provides read-execute permissions to libgtmutil.so. Previously
permissions were not explicitly provided to libgtmutil.so, and so the permissions depended on umask
settings (GTM-9116)

* Please see GTM-6631. (GTM-9142)

* Loading a binary extract in which duplicate null-subscript globals exist with both GT.M and
standard null subscript collation triggers a GTM-E-DBDUPNULCOL error. Previously, performing
this action could cause the GT.M process to terminate with a segmentation violation (SIG-11). This
issue was only observed in the GT.M development environment, and was never reported by a user.
(GTM-9144)

GTM V6.3-008
Page 26, August 16, 2019 FIS

GT.M V6.3-008
FIS

August 16, 2019, Page 27

Other

* Auto-zlink gives an error when the invocation name and the compilation name of the object don't
match. Due to a flaw in GTM-8178 in V6.3-006 auto-zlinking of an object module copied or moved to
another name caused a GTMCHECK. (GTM-9114)

* The code invoked for longer radix conversions has somewhat faster execution, and the other radix
conversion routines (%DH, %DO, %HD, %HO, %OD, %OH) have spelled out keywords. Those other
routines now have a single working code block in an attempt to make them as fast as possible, given
their documented behavior. Note that if your application limits the input(s) and performance is
important, you can get some speed improvement by eliminating behavior on which your code does
not rely. While the conversions work for very long values, the performance degrades with length and
may be impractical beyond some point. Previously, the longer conversion code had more abstraction,
and the other routines used two code blocks, rather than one. (GTM-9115)

* When a replication Receiver Server waiting for a connection detects bad input, it resets the
connection. Previously depending on the bad input it could fail, causing a core file or loop producing
a continuous stream of receiver server log messages taking significant amounts of file space.
(GTM-9134)

* ^%RO and ^%RI handle lines of up to 1MiB. Note that the current supported maximum code line
length is 8KiB and the GT.M compiler automatically breaks longer lines up and issues warnings
when lines exceed 8KiB. Previously ^%RO and ^%RI limited lines to 2044 bytes. (GTM-9145)

GTM V6.3-008
Page 28, August 16, 2019 FIS

GT.M V6.3-008
FIS

August 16, 2019, Page 29

Error and Other Messages

INVGVPATQUAL

INVGVPATQUAL, Invalid Global Value Pattern file qualifier value

MUPIP Error: This indicates that -GVPATFILE did not specify a valid file name. The maximum file
name length is 256.

Action: Specify a valid file name with the appropriate path.

MLKREHASH

MLKREHASH, LOCK hash table rebuilt for region rrrr (seed = ssss)

Run Time Information: GT.M has detected an issue with the LOCK hash table for region rrrr and
regenerated it using a new seed value ssss.

Action: This information message confirms the sucess of the rehash operation. No further action is
necessary unless it is issued repeatedly or with a large seed value.

MUKEEPNODEC

MUKEEPNODEC, Expected decimal integer input for keep

MUPIP Error: The value for the MUPIP REORG -keep qualifier does not have the appropriate syntax.

Action: Revise the argument for -keep= to be a decimal integer number of blocks, or a 0-99 percentage
followed by a percent sign (%).

MUKEEPNOTRUNC

MUKEEPNOTRUNC, Keep issued without -truncate

MUPIP Error: The -keep qualifier for MUPIP REORG only applies when used with -truncate.

Action: Adjust the MUPIP REORG command qualifiers to provide a valid combination.

MUKEEPPERCENT

MUKEEPPERCENT, Keep threshold percentage should be from 0 to 99

MUPIP Error: The MUPIP REORG -KEEP= qualifier can accept either a number of blocks or a
percentage from 0% to 99%.

Error and Other Messages MUTRUNCNOSPKEEP

FIS
Page 30, August 16, 2019 FIS

Action: If you wish to specify a number of blocks, remove the trailing %; if you wish to use a
percentage, ensure it is within range.

MUTRUNCNOSPKEEP

MUTRUNCNOSPKEEP, Region rrrr has insufficient space to meet truncate target percentage of pppp
with keep at bbbb blocks

MUPIP Information: MUPIP REORGE -KEEP for region rrrr could not meet the specified percentage
pppp so it left all the available blocks bbbb.

Action: None required, other than evaluating the space situation for the region and file system to
ensure that it is wholesome and does not require additional intervention.

NOJNLPOOL

NOJNLPOOL, No journal pool info found in the replication instance of xxxx

Run Time/MUPIP Error: This indicates that GT.M / MUPIP did not get replication information from the
instance file specified. Replication instance file was not initialized because replication did not start, or
some other process reset the replication instance file.

Action: Start the Source Server if it was not started. Note that the first Source Server process creates
the Journal Pool. Subsequent Source Server processes use the Journal Pool that the first Source Server
process creates. If the source server was running, stop the server and perform an optimum recovery
using MUPIP JOURNAL -ROLLBACK -BACKWARD "*" and restart the Source Server. If optimum
recovery command fails, perform a MUPIP RUNDOWN (or a MUPIP RUNDOWN -REGION "*"), and
then restart the Source Server.

NULLPATTERN

NULLPATTERN, Empty line found in the Pattern file

MUPIP Warning: MUPIP JOURNAL -EXTRACT pattern file contained an empty line, which generates
this message.

Action: Remove the empty line

	
	Table of Contents
	V6.3-009
	Overview
	Conventions
	Platforms
	Platform support lifecycle

	32- vs. 64-bit platforms
	Call-ins and External Calls
	Internationalization (Collation)
	Environment Translation

	Additional Installation Instructions
	
	Recompile
	Rebuild Shared Libraries or Images
	Compiling the Reference Implementation Plugin

	Upgrading to GT.M V6.3-009
	Stage 1: Global Directory Upgrade
	Stage 2: Database Files Upgrade
	Database Compatibility Notes

	Stage 3: Replication Instance File Upgrade
	Stage 4: Journal Files Upgrade
	Stage 5: Trigger Definitions Upgrade
	Downgrading to V5 or V4

	Managing M mode and UTF-8 mode
	Setting the environment variable TERM
	Installing Compression Libraries

	Change History
	V6.3-009

	Language
	System Administration
	Other
	Error and Other Messages
	INVGVPATQUAL
	MLKREHASH
	MUKEEPNODEC
	MUKEEPNOTRUNC
	MUKEEPPERCENT
	MUTRUNCNOSPKEEP
	NOJNLPOOL
	NULLPATTERN

