
GT.M
Release Notes
V6.3-005

FIS
Page 2, February 05, 2019 FIS

Contact Information

GT.M Group
Fidelity National Information Services, Inc.
200 Campus Drive
Collegeville, PA 19426
United States of America

GT.M Support for customers: gtmsupport@fisglobal.com
Automated attendant for 24 hour support: +1 (484) 302-3248
Switchboard: +1 (484) 302-3160
Website: http://fis-gtm.com

Legal Notice

Copyright ©2018-2019 Fidelity National Information Services, Inc. and/or its subsidiaries. All Rights Reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts and no Back-Cover Texts.

GT.M™ is a trademark of Fidelity National Information Services, Inc. Other trademarks are the property of their respective
owners.

This document contains a description of GT.M and the operating instructions pertaining to the various functions that
comprise the system. This document does not contain any commitment of FIS. FIS believes the information in this publication
is accurate as of its publication date; such information is subject to change without notice. FIS is not responsible for any errors
or defects.

Revision History

Revision 1.1 5 February 2019 Updated the Platforms section to add
AIX 7.1 TL 4 and AIX 7.2 as supported
versions; Correct the maximum V6
database size.

Revision 1.0 29 June 2018 V6.3-005

http://fis-gtm.com
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt

GT.M V6.3-005
FIS

February 05, 2019, Page iii

Table of Contents
V6.3-005 ... 1

Overview .. 1
Conventions ... 1
Platforms .. 3

Platform support lifecycle ... 5
32- vs. 64-bit platforms ... 5

Call-ins and External Calls .. 5
Internationalization (Collation) .. 6
Environment Translation ... 6

Additional Installation Instructions .. 7
.. 7

Upgrading to GT.M V6.3-005 ... 9
Stage 1: Global Directory Upgrade ... 9
Stage 2: Database Files Upgrade ... 10
Stage 3: Replication Instance File Upgrade .. 12
Stage 4: Journal Files Upgrade ... 13
Stage 5: Trigger Definitions Upgrade ... 13
Downgrading to V5 or V4 ... 14

Managing M mode and UTF-8 mode .. 15
Setting the environment variable TERM ... 17
Installing Compression Libraries .. 17

Change History ... 19
V6.3-005 .. 19

Database ... 23
Language .. 25
System Administration .. 27
Other .. 31
Error and Other Messages ... 33

COLLDATAEXISTS .. 33
COMMFILTERERR ... 33
EXTRINTEGRITY ... 33
FAILEDRECCOUNT ... 33
ICUNOTENABLED ... 34
LOADRECCNT ... 34
MSTACKCRIT .. 34
NOFILTERNEST ... 34
PATALTER2LARGE .. 34
REGFILENOTFOUND ... 35
VIEWCMD ... 35
VIEWFN ... 35

GTM V6.3-005
Page iv, February 05, 2019 FIS

GT.M V6.3-005
FIS

February 05, 2019, Page 1

V6.3-005

Overview

V6.3-005 provides a new form of restriction that allows users to filter ZSYSTEM and PIPE commands to
ensure appropriate actions as an alternative to completely disabling them. The release brings numerous
smaller enhancements, and fixes. See the Change History below. Please pay special attention to the
items marked with the symbols or

Note

Messages are not part of the GT.M API whose stability we strive to maintain. Make
sure that you review any automated scripting that parses GT.M messages.

Conventions

This document uses the following conventions:

Flag/Qualifiers -

Program Names or Functions upper case. For example, MUPIP BACKUP

Examples lower case. For example:
mupip backup -database ACN,HIST /backup

Reference Number A reference number is used to track software
enhancements and support requests.
It is enclosed between parentheses ().

Platform Identifier Where an item affects only specific platforms, the
platforms are listed in square brackets, e.g., [AIX]

Note

The term UNIX refers to the general sense of all platforms on which GT.M uses a
POSIX API. As of this date, this includes: AIX and GNU/Linux on x86 (32- and 64-
bits).

The following table summarizes the new and revised replication terminology and qualifiers.

Pre V5.5-000 terminology Pre V5.5-000
qualifier

Current terminology Current qualifiers

originating instance or primary
instance

-rootprimary originating instance or
originating primary instance.

-updok
(recommended)

V6.3-005 Conventions

FIS
Page 2, February 05, 2019 FIS

Pre V5.5-000 terminology Pre V5.5-000
qualifier

Current terminology Current qualifiers

Within the context of a
replication connection between
two instances, an originating
instance is referred to as
source instance or source side.
For example, in an B<-A->C
replication configuration, A is
the source instance for B and C.

-rootprimary (still
accepted)

replicating instance (or
secondary instance) and
propagating instance

N/A for replicating
instance or
secondary instance.

-propagateprimary
for propagating
instance

replicating instance.

Within the context of a
replication connection between
two instances, a replicating
instance that receives updates
from a source instance is
referred to as receiving instance
or receiver side. For example,
in an B<-A->C replication
configuration, both B and C can
be referred to as a receiving
instance.

-updnotok

N/A N/A supplementary instance.

For example, in an A->P->Q
replication configuration, P is
the supplementary instance.
Both A and P are originating
instances.

-updok

Effective V6.0-000, GT.M documentation adopted IEC standard Prefixes for binary multiples. This
document therefore uses prefixes Ki, Mi and Ti (e.g., 1MiB for 1,048,576 bytes). Over time, we'll update
all GT.M documentation to this standard.

 denotes a new feature that requires updating the manuals.

 denotes a new feature or an enhancement that may not be upward compatible and may affect an
existing application.

 denotes deprecated messages.

 denotes revised messages.

 denotes added messages.

http://physics.nist.gov/cuu/Units/binary.html

Platforms V6.3-005

GTM V6.3-005
FIS

February 05, 2019, Page 3

Platforms

Over time, computing platforms evolve. Vendors obsolete hardware architectures. New versions
of operating systems replace old ones. We at FIS continually evaluate platforms and versions of
platforms that should be Supported for GT.M. In the table below, we document not only the ones that
are currently Supported for this release, but also alert you to our future plans given the evolution of
computing platforms. If you are an FIS customer, and these plans would cause you hardship, please
contact your FIS account executive promptly to discuss your needs.

Each GT.M release is extensively tested by FIS on a set of specific versions of operating systems on
specific hardware architectures (the combination of operating system and hardware architecture is
referred to as a platform). This set of specific versions is considered Supported. There may be other
versions of the same operating systems on which a GT.M release may not have been tested, but
on which the FIS GT.M Group knows of no reason why GT.M would not work. This larger set of
versions is considered Supportable. There is an even larger set of platforms on which GT.M may well
run satisfactorily, but where the FIS GT.M team lacks the knowledge to determine whether GT.M is
Supportable. These are considered Unsupported. Contact FIS GT.M Support with inquiries about your
preferred platform.

As of the publication date, FIS supports this release on the hardware and operating system versions
below. Contact FIS for a current list of Supported platforms. The reference implementation of the
encryption plugin has its own additional requirements, should you opt to use it as included with GT.M.

Platform Supported
Versions

Notes

IBM Power Systems AIX 7.1 TL 4, 7.2 Only 64-bit versions of AIX with POWER7 as the minimum
required CPU architecture level are Supported.

While GT.M supports both UTF-8 mode and M mode on
this platform, there are problems with the AIX ICU utilities
that prevent FIS from testing 4-byte UTF-8 characters as
comprehensively on this platform as we do on others.

Running GT.M on AIX 7.1 requires APAR IZ87564, a fix for the
POW() function, to be applied. To verify that this fix has been
installed, execute instfix -ik IZ87564.

AIX 7.1 TL 5 is Supportable.

Only the AIX jfs2 filesystem is Supported. Other filesystems,
such as jfs1 are Supportable, but not Supported. FIS strongly
recommends use of the jfs2 filesystem on AIX; use jfs1 only for
existing databases not yet migrated to a jfs2 filesystem.

x86_64 GNU/Linux Red Hat
Enterprise
Linux 7.3;
Ubuntu 16.04
LTS

To run 64-bit GT.M processes requires both a 64-bit kernel as
well as 64-bit hardware.

GT.M should also run on recent releases of other major Linux
distributions with a contemporary Linux kernel (2.6.32 or

V6.3-005 Platforms

FIS
Page 4, February 05, 2019 FIS

Platform Supported
Versions

Notes

later), glibc (version 2.12 or later) and ncurses (version 5.7 or
later).

Due to build optimization and library incompatibilities, GT.M
versions older than V6.2-000 are incompatible with glibc
2.24 and up. This incompatibility has not been reported by
a customer, but was observed on internal test systems that
use the latest Linux software distributions from Fedora (26),
Debian (unstable), and Ubuntu (17.10). In internal testing,
processes either hung or encountered a segmentation violation
(SIG-11) during operation. Customers upgrading to Linux
distributions that utilize glibc 2.24+ must upgrade their GT.M
version at the same time as or before the OS upgrade.

GT.M requires the libtinfo library. If it is not already installed
on your system, and is available using the package manager,
install it using the package manager. If a libtinfo package is not
available:

* Find the directory where libncurses.so is installed on your
system.

* Change to that directory and make a symbolic link to
libncurses.so.<ver> from libtinfo.so.<ver>. Note that some of
the libncurses.so entries may themselves be symbolic links,
for example, libncurses.so.5 may itself be a symbolic link to
libncurses.so.5.9.

To support the optional WRITE /TLS fifth argument (the
ability to provide / override options in the tlsid section of the
encryption configuration file), the reference implementation of
the encryption plugin requires libconfig 1.4.x.

Although GT.M itself does not require libelf, the geteuid
program used by the GT.M installation script requires libelf
(packaged as libelf1 on current Debian/Ubuntu distributions
and elfutils-libelf on RHEL 6 & 7).

Only the ext4 and xfs filesystems are Supported.
Other filesystems are Supportable, but not Supported.
Furthermore, if you use the NODEFER_ALLOCATE
feature, FIS strongly recommends that you use xfs.
If you must use NODEFER_ALLOCATE with ext4,
you must ensure that your kernel includes commit
d2dc317d564a46dfc683978a2e5a4f91434e9711 (search for
d2dc317d564a46dfc683978a2e5a4f91434e9711 at https://
www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3).
The Red Hat Bugzilla identifier for the bug is 1213487. With

https://www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3
https://www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3

32- vs. 64-bit platforms V6.3-005

GTM V6.3-005
FIS

February 05, 2019, Page 5

Platform Supported
Versions

Notes

NODEFER_ALLOCATE, do not use any filesystem other than
ext4 and a kernel with the fix, or xfs.

x86 GNU/Linux Debian 9
(Stretch)

This 32-bit version of GT.M runs on either 32- or 64-bit x86
platforms; we expect the x86_64 GNU/Linux version of GT.M
to be preferable on 64-bit hardware. Running a 32-bit GT.M on
a 64-bit GNU/Linux requires 32-bit libraries to be installed. The
CPU must have an instruction set equivalent to 586 (Pentium)
or better.

Please also refer to the notes above on x86_64 GNU/Linux.

Platform support lifecycle

FIS usually supports new operating system versions six months or so after stable releases are available
and we usually support each version for a two year window. GT.M releases are also normally supported
for two years after release. While FIS will attempt to provide support to customers in good standing for
any GT.M release and operating system version, our ability to provide support diminishes after the two
year window.

GT.M cannot be patched, and bugs are only fixed in new releases of software.

32- vs. 64-bit platforms

The same application code runs on both 32-bit and 64-bit platforms; however there are operational
differences between them (for example, auto-relink and the ability to use GT.M object code from shared
libraries exist only on 64-bit platforms). Please note that:

* You must compile the application code separately for each platform. Even though the M source code
is the same, the generated object modules are different - the object code differs between x86 and
x86_64.

* Parameter-types that interface GT.M with non-M code using C calling conventions must match
the data-types on their target platforms. Mostly, these parameters are for call-ins, external calls,
internationalization (collation) and environment translation, and are listed in the tables below. Note
that most addresses on 64-bit platforms are 8 bytes long and require 8 byte alignment in structures
whereas all addresses on 32-bit platforms are 4 bytes long and require 4-byte alignment in structures.

Call-ins and External Calls

Parameter type 32-Bit 64-bit Remarks

gtm_long_t 4-byte
(32-bit)

8-byte
(64-bit)

gtm_long_t is much the same as the C language long type.

V6.3-005 32- vs. 64-bit platforms

FIS
Page 6, February 05, 2019 FIS

Parameter type 32-Bit 64-bit Remarks

gtm_ulong_t 4-byte 8-byte gtm_ulong_t is much the same as the C language unsigned
long type.

gtm_int_t 4-byte 4-byte gtm_int_t has 32-bit length on all platforms.

gtm_uint_t 4-byte 4-byte gtm_uint_t has 32-bit length on all platforms

Caution

If your interface uses gtm_long_t or gtm_ulong_t types but your interface code uses
int or signed int types, failure to revise the types so they match on a 64-bit platform
will cause the code to fail in unpleasant, potentially dangerous, and hard to diagnose
ways.

Internationalization (Collation)

Parameter type 32-Bit 64-bit Remarks

gtm_descriptor in
gtm_descript.h

4-byte 8-byte Although it is only the address within these types that
changes, the structures may grow by up to 8 bytes as a
result of compiler padding to meet platform alignment
requirements.

Important

Assuming other aspects of code are 64-bit capable, collation routines should require
only recompilation.

Environment Translation

Parameter type 32-Bit 64-bit Remarks

gtm_string_t type in
gtmxc_types.h

4-byte 8-byte Although it is only the address within these types that
changes, the structures may grow by up to 8 bytes as a
result of compiler padding to meet platform alignment
requirements.

Important

Assuming other aspects of code are 64-bit capable, environment translation routines
should require only recompilation.

Additional Installation Instructions V6.3-005

GTM V6.3-005
FIS

February 05, 2019, Page 7

Additional Installation Instructions

To install GT.M, see the "Installing GT.M" section in the GT.M Administration and Operations
Guide. For minimal down time, upgrade a current replicating instance and restart replication. Once
that replicating instance is current, switch it to become the originating instance. Upgrade the prior
originating instance to become a replicating instance, and perform a switchover when you want it to
resume an originating primary role.

Caution

Never replace the binary image on disk of any executable file while it is in use by
an active process. It may lead to unpredictable results. Depending on the operating
system, these results include but are not limited to denial of service (that is, system
lockup) and damage to files that these processes have open (that is, database
structural damage).

* FIS strongly recommends installing each version of GT.M in a separate (new) directory, rather than
overwriting a previously installed version. If you have a legitimate need to overwrite an existing
GT.M installation with a new version, you must first shut down all processes using the old version.
FIS suggests installing GT.M V6.3-005 in a Filesystem Hierarchy Standard compliant location
such as /usr/lib/fis-gtm/V6.3-005_arch (for example, /usr/lib/fis-gtm/V6.3-005_x86 on 32-bit Linux
systems). A location such as /opt/fis-gtm/V6.3-005_arch would also be appropriate. Note that the
arch suffix is especially important if you plan to install 32- and 64-bit versions of the same release of
GT.M on the same system.

* Use the appropriate MUPIP command (e.g. ROLLBACK, RECOVER, RUNDOWN) of the old GT.M
version to ensure all database files are cleanly closed.

* Make sure gtmsecshr is not running. If gtmsecshr is running, first stop all GT.M processes including
the DSE, LKE and MUPIP utilities and then perform a MUPIP STOP pid_of_gtmsecshr.

* Starting with V6.2-000, GT.M no longer supports the use of the deprecated $gtm_dbkeys and the
master key file it points to for database encryption. To convert master files to the libconfig format,

please click to download the CONVDBKEYS.m program and follow instructions in the comments
near the top of the program file. You can also download CONVDBKEYS.m from http://tinco.pair.com/
bhaskar/gtm/doc/articles/downloadables/CONVDBKEYS.m. If you are using $gtm_dbkeys for
database encryption, please convert master key files to libconfig format immediately after upgrading
to V6.2-000 or later. Also, modify your environment scripts to include the use of gtmcrypt_config
environment variable.

Recompile

* Recompile all M and C source files.

http://tinco.pair.com/bhaskar/gtm/doc/articles/downloadables/CONVDBKEYS.m

V6.3-005 Additional Installation Instructions

FIS
Page 8, February 05, 2019 FIS

Rebuild Shared Libraries or Images

* Rebuild all Shared Libraries after recompiling all M and C source files.

* If your application is not using object code shared using GT.M's auto-relink functionality, please
consider using it.

Compiling the Reference Implementation Plugin

If you plan to use database encryption and TLS replication, you must compile the reference
implementation plugin to match the shared library dependencies unique to your platform. The
instructions for compiling the Reference Implementation plugin are as follows:

1. Install the development headers and libraries for libgcrypt, libgpgme, libconfig, and libssl. On
Linux, the package names of development libraries usually have a suffix such as -dev or -devel and
are available through the package manager. For example, on Ubuntu_x86_64 a command like the
following installs the required development libraries:

sudo apt-get install libgcrypt11-dev libgpgme11-dev libconfig-dev libssl-dev

Note that the package names may vary by distribution / version.

2. Unpack $gtm_dist/plugin/gtmcrypt/source.tar to a temporary directory.

mkdir /tmp/plugin-build
cd /tmp/plugin-build
cp $gtm_dist/plugin/gtmcrypt/source.tar .
tar -xvf source.tar

3. Follow the instructions in the README.

* Open Makefile with your editor; review and edit the common header (IFLAGS) and library paths
(LIBFLAGS) in the Makefile to reflect those on your system.

* Define the gtm_dist environment variable to point to the absolute path for the directory where
you have GT.M installed

* Copy and paste the commands from the README to compile and install the encryption plugin
with the permissions defined at install time

Caution

There are separate steps to compile the encryption plugin for GT.M versions
V5.3-004 through V6.3-000 when OpenSSL 1.1 is installed and OpenSSL 1.0.x libraries
arestill available.

* Download the most recent OpenSSL 1.0.x version

* Compile and install (default installs to /usr/local/ssl)

Upgrading to GT.M V6.3-005 V6.3-005

GTM V6.3-005
FIS

February 05, 2019, Page 9

./config && make install

* Adjust the configuration : Move the newly installed libraries out of the way

mv /usr/local/ssl/lib /usr/local/ssl/lib.donotuse

* Adjust the configuration : Create another /usr/local/ssl/lib and symlink the
existing 1.0.x library into it as the default. This ensures that the encryption plugin
is compiled using the compatible OpenSSL 1.0.x library. Adjust the path below as
necessary.

mkdir /usr/local/ssl/lib && ln -s /path/to/existing/libssl.so.1.0.x /usr/
local/ssl/libssl.so

* Recompile the encryption plugin following existing directions above

* Remove /usr/local/ssl to avoid future complications

Upgrading to GT.M V6.3-005

The GT.M database consists of four types of components- database files, journal files, global directories,
and replication instance files. The format of some database components differs for 32-bit and 64-bit
GT.M releases for the x86 GNU/Linux platform.

GT.M upgrade procedure for V6.3-005 consists of 5 stages:

* Stage 1: Global Directory Upgrade

* Stage 2: Database Files Upgrade

* Stage 3: Replication Instance File Upgrade

* Stage 4: Journal Files Upgrade

* Stage 5: Trigger Definitions Upgrade

Read the upgrade instructions of each stage carefully. Your upgrade procedure for GT.M V6.3-005
depends on your GT.M upgrade history and your current version.

Stage 1: Global Directory Upgrade

FIS strongly recommends you back up your Global Directory file before upgrading. There is no one-step
method for downgrading a Global Directory file to an older format.

To upgrade from any previous version of GT.M:

* Open your Global Directory with the GDE utility program of GT.M V6.3-005.

* Execute the EXIT command. This command automatically upgrades the Global Directory.

V6.3-005 Upgrading to GT.M V6.3-005

FIS
Page 10, February 05, 2019 FIS

To switch between 32- and 64-bit global directories on the x86 GNU/Linux platform:

1. Open your Global Directory with the GDE utility program on the 32-bit platform.

2. On GT.M versions that support SHOW -COMMAND, execute SHOW -COMMAND -FILE=file-name.
This command stores the current Global Directory settings in the specified file.

3. On GT.M versions that do not support GDE SHOW -COMMAND, execute the SHOW -ALL
command. Use the information from the output to create an appropriate command file or use it as a
guide to manually enter commands in GDE.

4. Open GDE on the 64-bit platform. If you have a command file from 2. or 3., execute @file-name
and then run the EXIT command. These commands automatically create the Global Directory.
Otherwise use the GDE output from the old Global Directory and apply the settings in the new
environment.

An analogous procedure applies in the reverse direction.

If you inadvertently open a Global Directory of an old format with no intention of upgrading it, execute
the QUIT command rather than the EXIT command.

If you inadvertently upgrade a global directory, perform the following steps to downgrade to an old
GT.M release:

* Open the global directory with the GDE utility program of V6.3-005.

* Execute the SHOW -COMMAND -FILE=file-name command. This command stores the current
Global Directory settings in the file-name command file. If the old version is significantly out of date,
edit the command file to remove the commands that do not apply to the old format. Alternatively,
you can use the output from SHOW -ALL or SHOW -COMMAND as a guide to manually enter
equivalent GDE commands for the old version.

Stage 2: Database Files Upgrade

To upgrade from GT.M V6*:

There is no explicit procedure to upgrade a V6 database file when upgrading to a newer V6 version.
After upgrading the Global Directory, opening a V6 database with a newer V6 GT.M process
automatically upgrades fields in the database fileheader.

To upgrade from GT.M V5.0*/V5.1*/V5.2*/V5.3*/V5.4*/V5.5:

A V6 database file is a superset of a V5 database file and has potentially longer keys and records.
Therefore, upgrading a database file requires no explicit procedure. After upgrading the Global
Directory, opening a V5 database with a V6 process automatically upgrades fields in the database
fileheader.

A database created with V6 supports up to 992Mi blocks and is not backward compatible. V6 databases
that take advantage of V6 limits on key size and records size cannot be downgraded. Use MUPIP
DOWNGRADE -VERSION=V5 to downgrade a V6 database back to V5 format provided it meets

Upgrading to GT.M V6.3-005 V6.3-005

GTM V6.3-005
FIS

February 05, 2019, Page 11

the database downgrade requirements. For more information on downgrading a database, refer to
Downgrading to V5 or V4.

Important

A V5 database that has been automatically upgraded to V6 can perform all GT.M
V6.3-005 operations. However, that database can only grow to the maximum size
of the version in which it was originally created. A database created on V5.0-000
through V5.3-003 has maximum size of 128Mi blocks. A database created on V5.4-000
through V5.5-000 has a maximum size of 224Mi blocks. A database file created with
V6.0-000 (or above) can grow up to a maximum of 992Mi blocks. This means that, for
example, the maximum size of a V6 database file having 8KiB block size is 7936GiB
(8KiB*992Mi).

Important

In order to perform a database downgrade you must perform a MUPIP INTEG -
NOONLINE. If the duration of the MUPIP INTEG exceeds the time allotted for an
upgrade you should rely on a rolling upgrade scheme using replication.

If your database has any previously used but free blocks from an earlier upgrade cycle (V4 to V5),
you may need to execute the MUPIP REORG -UPGRADE command. If you have already executed the
MUPIP REORG -UPGRADE command in a version prior to V5.3-003 and if subsequent versions cannot
determine whether MUPIP REORG -UPGRADE performed all required actions, it sends warnings to
the syslog requesting another run of MUPIP REORG -UPGRADE. In that case, perform any one of the
following steps:

* Execute the MUPIP REORG -UPGRADE command again, or

* Execute the DSE CHANGE -FILEHEADER -FULLY_UPGRADED=1 command to stop the warnings.

Caution

Do not run the DSE CHANGE -FILEHEADER -FULLY_UPGRADED=1 command
unless you are absolutely sure of having previously run a MUPIP REORG -
UPGRADE from V5.3-003 or later. An inappropriate DSE CHANGE -FILEHEADE -
FULLY_UPGRADED=1 may lead to database integrity issues.

You do not need to run MUPIP REORG -UPGRADE on:

* A database that was created by a V5 MUPIP CREATE

* A database that has been completely processed by a MUPIP REORG -UPGRADE from V5.3-003 or
later.

For additional upgrade considerations, refer to Database Compatibility Notes.

To upgrade from a GT.M version prior to V5.000:

V6.3-005 Upgrading to GT.M V6.3-005

FIS
Page 12, February 05, 2019 FIS

You need to upgrade your database files only when there is a block format upgrade from V4 to V5.
However, some versions, for example, database files which have been initially been created with V4
(and subsequently upgraded to a V5 format) may additionally need a MUPIP REORG -UPGRADE
operation to upgrade previously used but free blocks that may have been missed by earlier upgrade
tools.

* Upgrade your database files using in-place or traditional database upgrade procedure depending
on your situation. For more information on in-place/traditional database upgrade, see Database
Migration Technical Bulletin.

* Run the MUPIP REORG -UPGRADE command. This command upgrades all V4 blocks to V5 format.

Note

Databases created with GT.M releases prior to V5.0-000 and upgraded to a V5 format
retain the maximum size limit of 64Mi (67,108,864) blocks.

Database Compatibility Notes

* Changes to the database file header may occur in any release. GT.M automatically upgrades database
file headers as needed. Any changes to database file headers are upward and downward compatible
within a major database release number, that is, although processes from only one GT.M release can
access a database file at any given time, processes running different GT.M releases with the same
major release number can access a database file at different times.

* Databases created with V5.3-004 through V5.5-000 can grow to a maximum size of 224Mi
(234,881,024) blocks. This means, for example, that with an 8KiB block size, the maximum database
file size is 1,792GiB; this is effectively the size of a single global variable that has a region to itself and
does not itself span regions; a database consists of any number of global variables. A database created
with GT.M versions V5.0-000 through V5.3-003 can be upgraded with MUPIP UPGRADE to increase
the limit on database file size from 128Mi to 224Mi blocks.

* Databases created with V5.0-000 through V5.3-003 have a maximum size of 128Mi (134, 217,728)
blocks. GT.M versions V5.0-000 through V5.3-003 can access databases created with V5.3-004 and
later as long as they remain within a 128Mi block limit.

* Database created with V6.0-000 or above have a maximum size of 1,040,187,392(992Mi) blocks.

* For information on downgrading a database upgraded from V6 to V5, refer to: Downgrading to V5 or
V4.

Stage 3: Replication Instance File Upgrade

V6.3-005 does not require new replication instance files if you are upgrading from V5.5-000. However,
V6.3-005 requires new replication instance files if you are upgrading from any version prior to
V5.5-000. Instructions for creating new replication instance files are in the Database Replication chapter
of the GT.M Administration and Operations Guide. Shut down all Receiver Servers on other instances

http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_Database_Migration.html
http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_Database_Migration.html
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch07.html

Upgrading to GT.M V6.3-005 V6.3-005

GTM V6.3-005
FIS

February 05, 2019, Page 13

that are to receive updates from this instance, shut down this instance Source Server(s), recreate the
instance file, restart the Source Server(s) and then restart any Receiver Server for this instance with the
-UPDATERESYNC qualifier.

Note

Without the -UPDATERESYNC qualifier, the replicating instance synchronizes with
the originating instance using state information from both instances and potentially
rolling back information on the replicating instance. The -UPDATERESYNC qualifier
declares the replicating instance to be in a wholesome state matching some prior (or
current) state of the originating instance; it causes MUPIP to update the information
in the replication instance file of the originating instance and not modify information
currently in the database on the replicating instance. After this command, the
replicating instance catches up to the originating instance starting from its own
current state. Use -UPDATERESYNC only when you are absolutely certain that
the replicating instance database was shut down normally with no errors, or
appropriately copied from another instance with no errors.

Important

You must always follow the steps described in the Database Replication chapter of
the GT.M Administration and Operations Guide when migrating from a logical dual
site (LDS) configuration to an LMS configuration, even if you are not changing GT.M
releases.

Stage 4: Journal Files Upgrade

On every GT.M upgrade:

* Create a fresh backup of your database.

* Generate new journal files (without back-links).

Important

This is necessary because MUPIP JOURNAL cannot use journal files from a release
other than its own for RECOVER, ROLLBACK, or EXTRACT.

Stage 5: Trigger Definitions Upgrade

If you are upgrading from V5.4-002A/V5.4-002B/V5.5-000 to V6.3-005 and you have database triggers
defined in V6.2-000 or earlier, you need to ensure that your trigger definitions are wholesome in the
older version and then run MUPIP TRIGGER -UPGRADE. If you have doubts about the wholesomeness
of the trigger definitions in the old version use the instructions below to capture the definitions delete

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch07.html

V6.3-005 Upgrading to GT.M V6.3-005

FIS
Page 14, February 05, 2019 FIS

them in the old version (-*), run MUPIP TRIGGER -UPGRADE in V6.3-005 and then reload them as
described below.

You need to extract and reload your trigger definitions only if you are upgrading from V5.4-000/
V5.4-000A/V5.4-001 to V6.3-005 or if you find your prior version trigger definitions have problems.
For versions V5.4-000/V5.4-000A/V5.4-001 this is necessary because multi-line XECUTEs for triggers
require a different internal storage format for triggers which makes triggers created in V5.4-000/
V5.4-000A/V5.4-001 incompatible with V5.4-002/V5.4-002A/V5.4-002B/V5.5-000/V6.0-000/V6.0-001/
V6.3-005.

To extract and reapply the trigger definitions on V6.3-005 using MUPIP TRIGGER:

1. Using the old version, execute a command like mupip trigger -select="*" trigger_defs.trg. Now,
the output file trigger_defs.trg contains all trigger definitions.

2. Place -* at the beginning of the trigger_defs.trg file to remove the old trigger definitions.

3. Using V6.3-005, run mupip trigger -triggerfile=trigger_defs.trg to reload your trigger
definitions.

To extract and reload trigger definitions on a V6.3-005 replicating instance using $ZTRIGGER():

1. Shut down the instance using the old version of GT.M.

2. Execute a command like mumps -run %XCMD 'i $ztrigger("select")' > trigger_defs.trg . Now,
the output file trigger_defs.trg contains all trigger definitions.

3. Turn off replication on all regions.

4. Run mumps -run %XCMD 'i $ztrigger("item","-*") to remove the old trigger definitions.

5. Perform the upgrade procedure applicable for V6.3-005.

6. Run mumps -run %XCMD 'if $ztrigger("file","trigger_defs.trg")' to reapply your trigger
definitions.

7. Turn replication on.

8. Connect to the originating instance.

Note

Reloading triggers renumbers automatically generated trigger names.

Downgrading to V5 or V4

You can downgrade a GT.M V6 database to V5 or V4 format using MUPIP DOWNGRADE.

Starting with V6.0-000, MUPIP DOWNGRADE supports the -VERSION qualifier with the following
format:

Managing M mode and UTF-8 mode V6.3-005

GTM V6.3-005
FIS

February 05, 2019, Page 15

MUPIP DOWNGRADE -VERSION=[V5|V4]

-VERSION specifies the desired version for the database header.

To qualify for a downgrade from V6 to V5, your database must meet the following
requirements:

1. The database was created with a major version no greater than the target version.

2. The database does not contain any records that exceed the block size (spanning nodes).

3. The sizes of all the keys in database are less than 256 bytes.

4. There are no keys present in database with size greater than the Maximum-Key-Size specification in
the database header, that is, Maximum-Key-Size is assured.

5. The maximum Record size is small enough to accommodate key, overhead, and value within a block.

To verify that your database meets all of the above requirements, execute MUPIP INTEG -NOONLINE.
Note that the integrity check requires the use of -NOONLINE to ensure no concurrent updates
invalidate the above requirements. Once assured that your database meets all the above requirements,
MUPIP DOWNGRADE -VERSION=V5 resets the database header to V5 elements which makes it
compatible with V5 versions.

To qualify for a downgrade from V6 to V4, your database must meet the same downgrade requirements
that are there for downgrading from V6 to V5.

If your database meets the downgrade requirements, perform the following steps to downgrade to V4:

1. In a GT.M V6.3-005 environment:

a. Execute MUPIP SET -VERSION=v4 so that GT.M writes updates blocks in V4 format.

b. Execute MUPIP REORG -DOWNGRADE to convert all blocks from V6 format to V4 format.

2. Bring down all V6 GT.M processes and execute MUPIP RUNDOWN -FILE on each database file to
ensure that there are no processes accessing the database files.

3. Execute MUPIP DOWNGRADE -VERSION=V4 to change the database file header from V6 to V4.

4. Restore or recreate all the V4 global directory files.

5. Your database is now successfully downgraded to V4.

Managing M mode and UTF-8 mode

With International Components for Unicode (ICU) version 3.6 or later installed, GT.M's UTF-8 mode
provides support for Unicode® (ISO/IEC-10646) character strings. On a system that does not have ICU
3.6 or later installed, GT.M only supports M mode.

On a system that has ICU installed, GT.M optionally installs support for both M mode and UTF-8
mode, including a utf8 subdirectory of the directory where GT.M is installed. From the same source

http://icu-project.org

V6.3-005 Managing M mode and UTF-8 mode

FIS
Page 16, February 05, 2019 FIS

file, depending upon the value of the environment variable gtm_chset, the GT.M compiler generates
an object file either for M mode or UTF-8 mode. GT.M generates a new object file when it finds both
a source and an object file, and the object predates the source file and was generated with the same
setting of $gtm_chset/$ZCHset. A GT.M process generates an error if it encounters an object file
generated with a different setting of $gtm_chset/$ZCHset than that processes' current value.

Always generate an M object module with a value of $gtm_chset/$ZCHset matching the value
processes executing that module will have. As the GT.M installation itself contains utility programs
written in M, their object files also conform to this rule. In order to use utility programs in both
M mode and UTF-8 mode, the GT.M installation ensures that both M and UTF-8 versions of object
modules exist, the latter in the utf8 subdirectory. This technique of segregating the object modules by
their compilation mode prevents both frequent recompiles and errors in installations where both modes
are in use. If your installation uses both modes, consider a similar pattern for structuring application
object code repositories.

GT.M is installed in a parent directory and a utf8 subdirectory as follows:

* Actual files for GT.M executable programs (mumps, mupip, dse, lke, and so on) are in the parent
directory, that is, the location specified for installation.

* Object files for programs written in M (GDE, utilities) have two versions - one compiled with support
for UTF-8 mode in the utf8 subdirectory, and one compiled without support for UTF-8 mode in the
parent directory. Installing GT.M generates both versions of object files, as long as ICU 3.6 or greater
is installed and visible to GT.M when GT.M is installed, and you choose the option to install UTF-8
mode support. Note that on 64-bit versions of GT.M, the object code is in shared libraries, rather than
individual files in the directory.

* The utf8 subdirectory has files called mumps, mupip, dse, lke, and so on, which are relative symbolic
links to the executables in the parent directory (for example, mumps is the symbolic link ../mumps).

* When a shell process sources the file gtmprofile, the behavior is as follows:

* If $gtm_chset is "m", "M" or undefined, there is no change from the previous GT.M versions to the
value of the environment variable $gtmroutines.

* If $gtm_chset is "UTF-8" (the check is case-insensitive),

* $gtm_dist is set to the utf8 subdirectory (that is, if GT.M is installed in /usr/lib/fis-gtm/
gtm_V6.3-005_i686, then gtmprofile sets $gtm_dist to /usr/lib/fis-gtm/gtm_V6.3-005_i686/utf8).

* On platforms where the object files have not been placed in a libgtmutil.so shared library,
the last element of $gtmroutines is $gtm_dist($gtm_dist/..) so that the source files in the
parent directory for utility programs are matched with object files in the utf8 subdirectory. On
platforms where the object files are in libgtmutil.so, that shared library is the one with the object
files compiled in the mode for the process.

For more information on gtmprofile, refer to the Basic Operations chapter of GT.M Administration and
Operations Guide.

Although GT.M uses ICU for UTF-8 operation, ICU is not FIS software and FIS does not support ICU.

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch03.html

Setting the environment variable TERM V6.3-005

GTM V6.3-005
FIS

February 05, 2019, Page 17

Setting the environment variable TERM

The environment variable TERM must specify a terminfo entry that accurately matches the terminal
(or terminal emulator) settings. Refer to the terminfo man pages for more information on the terminal
settings of the platform where GT.M needs to run.

* Some terminfo entries may seem to work properly but fail to recognize function key sequences or
fail to position the cursor properly in response to escape sequences from GT.M. GT.M itself does
not have any knowledge of specific terminal control characteristics. Therefore, it is important to
specify the right terminfo entry to let GT.M communicate correctly with the terminal. You may need
to add new terminfo entries depending on your specific platform and implementation. The terminal
(emulator) vendor may also be able to help.

* GT.M uses the following terminfo capabilities. The full variable name is followed by the capname in
parenthesis:

auto_right_margin(am), clr_eos(ed), clr_eol(el), columns(cols), cursor_address(cup),
 cursor_down(cud1), cursor_left(cub1), cursor_right(cuf1), cursor_up(cuu1),
 eat_newline_glitch(xenl), key_backspace(kbs), key_dc(kdch1),key_down(kcud1),
 key_left(kcub1), key_right(kcuf1), key_up(kcuu1), key_insert(kich1),
 keypad_local(rmkx),keypad_xmit(smkx), lines(lines).

GT.M sends keypad_xmit before terminal reads for direct mode and READs (other than READ *) if
EDITING is enabled. GT.M sends keypad_local after these terminal reads.

Installing Compression Libraries

If you plan to use the optional compression facility for replication, you must provide the compression
library. The GT.M interface for compression libraries accepts the zlib compression libraries without
any need for adaptation. These libraries are included in many UNIX distributions and are downloadable
from the zlib home page. If you prefer to use other compression libraries, you need to configure or
adapt them to provide the same API as that provided by zlib.

If a package for zlib is available with your operating system, FIS suggests that you use it rather than
building your own.

By default, GT.M searches for the libz.so shared library in the standard system library directories (for
example, /usr/lib, /usr/local/lib, /usr/local/lib64). If the shared library is installed in a non-standard
location, before starting replication, you must ensure that the environment variable LIBPATH (AIX)
or LD_LIBRARY_PATH (GNU/Linux) includes the directory containing the library. The Source and
Receiver Server link the shared library at runtime. If this fails for any reason (such as file not found,
or insufficient authorization), the replication logic logs a DLLNOOPEN error and continues with no
compression.

Although GT.M uses a library such as zlib for compression, such libraries are not FIS software and FIS
does not support any compression libraries.

http://www.zlib.net

GTM V6.3-005
Page 18, February 05, 2019 FIS

GT.M V6.3-005
FIS

February 05, 2019, Page 19

Change History

V6.3-005

Fixes and enhancements specific to V6.3-005:

Id Prior Id Category Summary

GTM-3659 S9B04-001840 Admin Improved MUPIP LOAD error messaging

GTM-4647 S9C09-002219 Admin The gtm_mstack_size environment variable
specifies M stack size in KiB

GTM-5059 S9D08-002355 Admin gtm_mstack_crit optionaly specifies the
percentage of the stack at which GT.M
should produce a STACKCRIT

GTM-5574 C9E11-002664 Other Percent conversion routines handle larger
numbers

GTM-7960 - Admin Warnings of approach to maximum
database file size

GTM-8836 - Admin Account for MUPIP journal rollback multi-
threading in hash table condition handler

GTM-8875 - Other More complete detection of
STACKOFLOW

GTM-8877 - Admin Allow user to create M filters for the
commands passed to zsystem and PIPE

GTM-8910 - DB Prevent disruption of $ORDER(gvn,1) by
MUPIP REORG

GTM-8930 - Language Improvement to return values from
$VIEW("JNLPOOL")

GTM-8940 - DB Performance improvement for ftok
semaphores

GTM-8941 - Admin LKE recognizes the full keyword for the -
CRITICAL qualifier

GTM-8942 - Other Reduce impact of signal management

GTM-8943 - Language ZGOTO 0 in a call-in returns to the
invoking C code

GTM-8945 - Admin Prevent Receiver hang after killing an
Update Process

Change History V6.3-005

FIS
Page 20, February 05, 2019 FIS

Id Prior Id Category Summary

GTM-8949 - Other Prevent recursive calls to system memory
allocator

GTM-8951 - Language $TEXT() and ZPRINT use auto-relink when
their argument includes a routinename

GTM-8952 - Other On 32-bit Linux, prevent ASSERTPRO
when compiling a routine with many,
many local variables

GTM-8953 - Admin ROLLBACK FORWARD with -VERIFY
properly applies all valid updates

GTM-8954 - Admin Source Server sends all errors to the log file

GTM-8955 - Other Relink Locking Speedup

GTM-8956 - Other -NOWARNING compiler qualifier
suppresses more messages

GTM-8957 - Admin MUPIP SET -NOREADONLY -ACC=BG
works in one command

GTM-8958 - Admin TLS reference implementation plug-in
disables SSLv3 by default

GTM-8959 - Language For 64-bit Linux, fix ZGOTO 0 within a
call-in

GTM-8961 - Language Clean path reported by ZSHOW "D", $KEY,
and $ZSOCKET("","LOCALADDRESS",) on
AIX

GTM-8962 - Language Clean up ZSHOW "i" output

GTM-8964 - Admin MUPIP respects -READONLY (MM)
database state

GTM-8965 - Language Alternation pattern with a large match
produces a PATALTER2LARGE error

GTM-8967 - DB Correct reporting of globals reported by
TPRESTART

GTM-8969 - DB When encrypting for the first time, prevent
spurious CRYPTOPFAILED errors

GTM-8973 - Other External call table loading more careful
about M labelrefs

GTM-8974 - DB Improved handling of significant IO pauses
in Database or Journal I/O

V6.3-005 Change History

GTM V6.3-005
FIS

February 05, 2019, Page 21

Id Prior Id Category Summary

GTM-8980 - Language VIEW and $VIEW() fixes, particularly
related to region arguments

GTM-8981 - Language Fix to IF @<literal>

GTM-8985 - Language Prevent possible incorrect result from a
function with all literal arguments in a
Boolean expression

GTM-8988 - Admin MUPIP RESTORE handling of out-of-space

GTM-8989 - Admin Prevent unusual MUPIP RUNDOWN hang

GTM-8990 - Language ZRUPDATE treats a cycle of symbolic links
like a simple missing routine

GTM-8992 - DB GT.M never decrements database statistics
for $DATA(), $GET(), $ORDER(), or
$QUERY()

GTM-8996 - Admin GT.M issues an fsync on the database file
after a region freeze goes into effect

GTM-9001 - Other Improved bounds checking in DSE and
MUPIP

GTM V6.3-005
Page 22, February 05, 2019 FIS

GT.M V6.3-005
FIS

February 05, 2019, Page 23

Database

* $ORDER(gvn,-1) and $ZPREVIOUS(gvn) appropriately handle the concurrent move of the global
variable tree root block of the gvn by MUPIP REORG; previously, this concurrence could occasionally
produce a GVORDERFAIL with a status code of tSSS. (GTM-8910)

* GT.M avoids superfluous public (ftok) semaphore control operations on database startup or
rundown. (GTM-8940)

* TPRESTART messages correctly identify the global causing the conflict; previously they could report
an incorrect global name. (GTM-8967)

* GT.M processes work correctly when a concurrent MUPIP REORG -ENCRYPT encrypts a previously
unencrypted database file. Previously GT.M processes could fail with CRYPTOPFAILED errors
unaccompanied by other errors explaining the reason for the failure. This issue was only observed in
the GT.M development environment, and was never reported by a user. (GTM-8969)

* GT.M processes attempting to acquire a shared database resource and encountering long delays
continue to wait if the process holding the resource is still active. Previously they intervened
prematurely which could cause DBDANGER errors and accompanying database damage. GT.M
processes attempting to acquire a shared resource required to perform journal writes and
encountering an extended delay in acquiring the resource, issue JNLSENDOPER/JNLFLUSH/
JNLPROCSTUCK messages to the system log, and, if so configured, freeze the instance as a result,
sending REPLINSTFROZEN/REPLINSTFREEZECOMMENT messages to the system log. They
continue to attempt the journal writes, removing the instance freeze if they eventually succeed.
Previously, such processes received an error, and the instance required a operator action to release
the freeze. (GTM-8974)

* GT.M does not decrement database statistics for $DATA(), $GET(), $ORDER(), or $QUERY(). Note
that, to minimize performance impact, GT.M updates most database statistics without concurrency
controls, so the statistics are approximate and may have brief fluctuations. Previously GT.M made
explicit adjustments which reporting was more likely to detect. MERGE operations increment
DATA and GET database statistics to more accurately reflect database activity. Previously, Merge
suppressed increments to those statistics under certain conditions.(GTM-8992)

GTM V6.3-005
Page 24, February 05, 2019 FIS

GT.M V6.3-005
FIS

February 05, 2019, Page 25

Language

* If the process has access to an instance file designation, $VIEW("JNLPOOL") returns its name; if the
process has not yet opened the pool, the return contains an asterisk after the name. If the process
does not have sufficient information to determine a replication journal instance file, the function
returns "No replication instance defined." Previously, the function with this argument returned an
empty string if the process had not opened the journal pool. (GTM-8930)

* A ZGOTO 0 in case of call-in, unwinds all the M stack frames and returns to the invoking C routine.
In case of a non-CI invocation, this terminates the process. A gtm_ci invocation without calling
gtm_init() first, proceeds with the CI invocation. Previously, this produced a segmentation violation
(SIG-11) error. This issue was only observed in the GT.M development environment, and was never
reported by a user. (GTM-8943)

* With auto-relink enabled, $TEXT() and ZPRINT use auto-relink when their argument includes
a routinename. Note that ZBREAK does not use auto-relink because its intended purpose is as a
debugging facility and if the user intends the ZBREAK for a new version they can explicitly request it
with a ZLINK. Previously, $TEXT() and ZPRINT used the version most recently linked by the process
even if a new version had become available in an auto-relink enabled environment. (GTM-8951)

* ZGOTO 0 in a call-in returns to the invoking program. Previously on x86-64 Linux systems with
glibc 2.24 or later, this generated a segmentation violation (SIG-11). [x86-64 Linux](GTM-8959)

* The path reported by ZSHOW "D", $KEY, and $ZSOCKET("","LOCALADDRESS",) for LOCAL
sockets passed via JOB or WRITE /PASS is correct. Previously on AIX 7.2, there could have been
extra bytes at the end. This issue was only observed in the GT.M development environment, and was
never reported by a user.[AIX 7.2] (GTM-8961)

* ZSHOW "I" outputs $ZPIN and $ZPOUT even if they are the same as $PRINCIPAL and no longer
displays $ZPROCESS, as it was only meaningful on OpenVMS; also, $ZTNAME appears in proper
alphabetic sequence. Previously if $ZPIN or $ZPOUT matched $PRINCIPAL, ZSHOW "I" omitted
them, $ZPROCESS appeared as an empty string and $ZTNAME was not ordered appropriately.
(GTM-8962)

* Pattern match of a string with an alternation match exceeding what GT.M can handle produces a
PATALTER2LARGE error; previously this condition produced a segmentation violation (SIG-11).
(GTM-8965)

* VIEW and $VIEW() with a empty string or inappropriate region-list works appropriately; in
V6.3-004 these could cause inappropriate results, including a segmentation violation (SIG-11).
$VIEW("statshare") returns a 0 when the process has sharing disabled, a 1 when it has sharing
enabled and a 2 when sharing is selectively enabled. In V6.3-004, it did not differentiate between the
all and selective cases and returned 1 when sharing was disabled and selective disabling was also
specified. $VIEW("statshare","<region>") works appropriately even if the region had been selectively
disabled when full sharing is disabled and the region had not been opened. In V6.3-004, this set of
conditions produced a segmentation violation (SIG-11). The error messages when invalid parameters

Language

FIS
Page 26, February 05, 2019 FIS

are passed to VIEW/$VIEW() print the name of the parameter; previously such error messages did
not have the name of the parameter. (GTM-8980)

* IF @<literal> works correctly when the literal evaluates to FALSE; in versions V6.3-001 to V6.3-004,
it tended to fail with an inappropriate INDEXTRACHARS error or a segmentation violation (SIG-11).
(GTM-8981)

* The GT.M compiler appropriately handles possible string returns into Boolean expressions from
functions with all literal arguments; in V6.3-000 to V6.3-004 it could produce an incorrect result.
The workaround was to avoid all literal arguments for $CHAR(), $EXTRACT(), $PIECE(), their $Z*()
variants and $SELECT() when they appeared in Boolean expressions. (GTM-8985)

* When ZRUPDATE encounters a cycle of symbolic links without finding a specified routine, it treats
the same as a simple routine not found and ignores the missing routine. Previously, the command
issued an error with text about "too many levels of symbolic links". This issue was observed in the
GT.M development environment after upgrading to newer Linux distributions. (GTM-8990)

GT.M V6.3-005
FIS

February 05, 2019, Page 27

System Administration

* MUPIP LOAD reports ranges of records not loaded due to missing database files; previously it
reported an error for every such record. (GTM-3659)

* GT.M supports specifying the M stack size in KiB with the gtm_mstack_size environment variable.
No setting or a setting of 0 uses the default (272KiB). The minimum supported size is 25 KiB; GT.M
reverts values smaller than this to 25 KiB. The maximum supported size is 10000 KiB; GT.M reverts
values larger than this to 10000 KiB. (GTM-4647)

* GT.M recognizes setting the environment variable gtm_mstack_crit_threshold to specify an integer
between 15 and 95 defining the percentage of the stack which should be used before GT.M emits
a STACKCRIT warning. If the value is below the minimum or above the maximum GT.M uses the
minimum or maximum respectively. The default is 90. (GTM-5059)

* An automatic database file extension, MUPIP EXTEND, INTEG and SIZE all put a message in the
system logs when the database reaches 88% of its maximum size. Beyond this 88% threshold, manual
and automatic extends only report at 1% intervals, but INTEG and SIZE report at every subsequent
invocation while the condition persists. All but the automatic extension also produce the message for
the operator. Previously GT.M gave no such warnings, which made it necessary to proactively check
on database size. (GTM-7960)

* When a multi-thread instance of MUPIP journal -rollback runs out of memory during a rehashing
operation, child threads transfer error-handling to the parent thread and terminate themselves.
Previously, child threads occasionally failed to report the error, causing MUPIP to halt without a
descriptive error message. This issue was only observed in the GT.M development environment, and
was never reported by a user. (GTM-8836)

* The GT.M restriction mechanism recognizes the following lines:

ZSYSTEM_FILTER[:M labelref]
PIPE_FILTER[:M labelref]

The labelref must include a routine name. If a process is restricted by a ZSYSTEM or PIPE_OPEN
line in the restrictions file that restriction takes precedence over the corresponding filter restriction.
Otherwise when a process is subject to these restrictions, GT.M inserts an invocation of the
labelref prior to the restricted command, passing a string containing the argument to the ZSYSTEM
command or the command deviceparameter of the PIPE OPEN. The path to the filter routine must be
included in $zroutines. FIS recommends that the filter routine is placed in a location with restricted
access such as $gtm_dist. If the filter invocation return is -1,GT.M produces a RESTRICTEDOP error,
otherwise it executes the command using the returned string via output parameters as a, possibly
identical, replacement for the original string. Since GT.M uses the call-ins mechanism to execute
the filters, a filter invocation inside a TP transaction in call-ins produces a CITPNESTED error. Note
that because ZSYSTEM and OPEN are not Isolated actions FIS recommends against their use within
a TP transaction. Filters also increment the nested level of call-ins. A recursive filter invocation

System Administration

FIS
Page 28, February 05, 2019 FIS

produces a NOFILTERNEST error. GT.M reports all filter errors to the operator log accompanied by a
COMMFILTERERR.

An example restrict file for this:

cat $gtm_dist/restrict.txt

ZSYSTEM_FILTER:^filterzsy
PIPE_FILTER:^filterzsy

The actual filter routine:

filterzsy(inarg,outarg);
 if ""=inarg set outarg="-1;must provide a command" quit
 for i=1:1 set arg=$piece(inarg,";",i) quit:""=arg do quit:$data(outarg)
 . for quit:$zchar(9,32)'[$extract(arg) set arg=$extract(arg,2,9999)
 . set cmd=$piece(arg," ")
 . for restrict="sudo","cd" if cmd=restrict set outarg="-1;command "_restrict_" not
 permitted" quit
 . quit:$data(outarg)
 . if "echo"=cmd set $piece(arg," ")="echo #",$piece(inarg,";",i)=arg ;example of
 modification
 set:'$data(outarg) outarg=inarg
 quit +outarg

Filter execution starts with $STACK=1 ($ZLEVEL=2).

Following are the GT.M commands, Intrinsic Special Variables, and functions whose behavior
changes in the context of a filter invocation.

ZGOTO 0 (zero) returns to the processing of the restricted command as does ZGOTO 1 (one) with
no entryref, while ZGOTO 1:entryref replaces the originally invoked filter and continues filter
execution.

$ZTRAP/$ETRAP NEW'd at level 1.

$ZLEVEL initializes to one (1) in GTM$CI, and increments for every new stack level.

$STACK initializes to zero (0) in GTM$CI frame, and increments for every new stack level.

$ESTACK NEW'd at level one (1) in GTM$CI frame.

$ECODE/$STACK() initialized to the empty string at level one (1) in GTM$CI frame.

After the filter completes, GT.M restores the above to their values at the invocation of the filter.
(GTM-8877)

* LKE recognizes the full keyword for the -CRITICAL qualifier; previously it only accepted -CRIT.
(GTM-8941)

System Administration

GTM V6.3-005
FIS

February 05, 2019, Page 29

* The receiver process recovers after its update process was terminated with a signal while idle.
Previously, on Linux systems with glibc 2.25 or newer, the receiver process could hang indefinitely,
requiring manual cleanup of the process and shared memory. This issue was only observed in the
GT.M development environment, and was never reported by a user. (GTM-8945)

* MUPIP JOURNAL -ROLLBACK -FORWARD when executed with -VERIFY properly applies all
updates. Previously updates that should have been applied to the database were instead sent to the
lost transaction file. The workaround was to execute MUPIP JOURNAL -VERIFY independent of the
FOWARD ROLLBACK. (GTM-8953)

* The Source Server directs errors to the Source Server log file. A previous fix with GTM-8576 was
incomplete and could result in TLS initialization error messages not logged to the server log file.
(GTM-8954)

* Executing MUPIP SET -NOREAD_ONLY -ACC=BG on a read-only database sets the access mode
to BG and turns off read-only. Previously, this action would result in a READONLYNOBG error
message and no changes to the file. (GTM-8957)

* The TLS reference implementation plug-in disables SSLv3 by default. Previously, customers wishing
to disable SSLv3 needed to add the configuration option 'ssl-options: "SSL_OP_NO_SSLv3";' to the
"tls" namespace in the $gtmcrypt_config configuration file. (GTM-8958)

* MUPIP does not modify -READONLY (MM) database files; previously various MUPIP commands
could inappropriately update state information in such database files, causing errors when
subsequently using the database. (GTM-8964)

* MUPIP RESTORE exits with an error when it encounters an out-of-space condition. Previously, if
MUPIP RESTORE encountered an out-of-space condition, if crashed with a segmentation violation
(SIG-11). This issue was only observed in the GT.M development environment, and was never
reported by a user. (GTM-8988)

* MUPIP RUNDOWN works as expected. In rare situations, processes killed during transaction
commits could leave the transaction information in an inconsistent state that caused MUPIP
RUNDOWN to hang. Note FIS strongly recommends against kill -9 of a process accessing the
database as it can induce database damage. This issue was only observed in the GT.M development
environment, and was never reported by a user. (GTM-8989)

* GT.M issues an fsync on the database file after a region freeze goes into effect, which forces the
underlying file system to harden changes to secondary storage. (GTM-8996)

GTM V6.3-005
Page 30, February 05, 2019 FIS

GT.M V6.3-005
FIS

February 05, 2019, Page 31

Other

* The %DH,%HD,%OH,%HO,%OD, and %DO routines now handle conversions with numbers up
to GT.M's maximum string length in size. Additionally, %DH and %DO routines now handle the
conversion of negative decimal numbers properly, even when the specified length is not long
enough to represent that fully converted number. Previously, the %DH,%HD,%OH,%HO,%OD, and
%DO routines could only deal with numbers up to the equivalent of the maximum 18-digit decimal
number. Attempting to convert a number larger than this would cause roundoff in the final result,
which still occurs if they are used for arithmetic. Moreover, specifying a length for the %DH and
%DO routines that was not long enough to hold the fully converted result would cause the routines
to produce incorrect values. The workaround for both these issues was to avoid using these percent
routines with numbers greater than the maximum 18-digit decimal number and to always specify an
appropriate length for the %DH and %DO routines. (GTM-5574)

* When a stack frame exceeds the M virtual machine stack pointer, GT.M issues a STACKOFLOW
error and produces a GTM_FATAL_* context dump, but no core file, as this an application issue,
rather than a GT.M problem. A module with a very large number of variables and/or dynamic literals
can cause this problem. Note that the $gtm_mstack environment variable can, within limits, set the
size of the M virtual machine stack size. Previously if the overflow was sufficient to make the stack
pointer negative, the process exited with a segmentation violation (SIG-11). (GTM-8875)

* GT.M avoids superfluous signal management operations. Previously system traces showed more
sigprocmask system calls than desirable, particularly on Linux systems with Meltdown/Spectre
mitigation in place. (GTM-8942)

* GT.M prevents recursive calls to the system memory allocator. Previously, the system memory
allocator could be called recursively which resulted in a process hanging. This issue was only
observed in the GT.M development environment, and was never reported by a user. (GTM-8949)

* GT.M appropriately compiles programs with large numbers of local variable names on 32-bit Linux;
previously, compiling a routine with enough local variable names produced an ASSERTPRO and
no object file. This issue was only observed in the GT.M development environment, and was never
reported by a user. [x86 Linux](GTM-8952)

* GT.M uses a lighter weight locking mechanism to protect the relink control file. Previously, a large
number of concurrent relink control operations such as those done on process shutdown could cause
the system to use an excessive amount of CPU. (GTM-8955)

* The GT.M compiler -NOWARNING qualifier for the MUMPS command and $ZCOMPILE suppresses
warning messages for BADCHAR, BLKTOODEEP, and LITNONGRAPH; previously it did not.
(GTM-8956)

* GT.M external call loading is more discriminating about M labelrefs; previously it did not detect all
invalid labelrefs, which deferred error detection and made diagnosis more challenging. (GTM-8973)

* GT.M appropriately bounds checks variable length input parameters to MUPIP and DSE. Previously
it did not detect an off-by-one buffer overrun. Also, MUPIP EXTRACT issues the ICUNOTENABLED

Other

FIS
Page 32, February 05, 2019 FIS

warning message when used with the -OCHSET qualifier while in M mode. Previously, attempting
to use -OCHSET while in M mode resulted in a SIG-11. These issues were only observed in the GT.M
development environment, and was never reported by a user. (GTM-9001)

GT.M V6.3-005
FIS

February 05, 2019, Page 33

Error and Other Messages

COLLDATAEXISTS

COLLDATAEXISTS, Collation type cannot be changed while xxxx data exists

Run Time Error: This indicates that an attempt was made to change the collation type while xxxx was
either a subscripted local for a process collation change or a gvn name for global variable collation.

Action: KILL or NEW the local variables before you change the local collation type, or KILL a gvn
before changing its collation.

COMMFILTERERR

COMMFILTERERR, Error executing the command filter for FFFF DDDD

Run Time Error: Reports a problem in filter code where FFFF describes the nature of the filter and
DDDD some thing about the nature of the issue. There may be associated / related messages. Because
filters are a potential security tool, these errors tend are generally reported to the operator log.

Action: Analyze the filter code in light of the messages and revise accordingly.

EXTRINTEGRITY

EXTRINTEGRITY, Database ffff potentially contains spanning nodes or data encrypted with two
different keys

MUPIP Error: MUPIP EXTRACT cannot run because the database file ffff might contain spanning nodes
or be partially encrypted with a particular key. Proceeding on a live database in such situation could
result in data corruption.

Action: If you encounter this error while running MUPIP EXTRACT with -FORMAT="BINARY", re-
run the command with the -FREEZE qualifier. MUPIP EXTRACT requires -FREEZE to acquire stand-
alone access to produce a consistent copy of the data. However, not using -FREEZE when you request
a MUPIP EXTRACT may produce a loadable, if inconsistent output. If you encountered this error while
running MUPIP EXTRACT with ZWR or GO format, it is likely that your database is encrypted with
more than one key; with BINARY output it may be multiple keys or spanning node data. If the issue
is a key change, run MUPIP REORG -ENCRYPT to complete the encryption of the database. As a final
resort, you may use an -OVERRIDE qualifier to proceed on a live database that either contains spanning
nodes or is undergoing (re)encryption. Although EXTRACT -OVERRIDE may produce text for analysis,
the result is not suitable as input for MUPIP LOAD and FIS highly discourages using -OVERRIDE.

FAILEDRECCOUNT

FAILEDRECCOUNT, LOAD unable to process MMMM records

Error and Other Messages ICUNOTENABLED

FIS
Page 34, February 05, 2019 FIS

MUPIP Error: MUPIP LOAD was unable to load MMMM records from the specified input extract.

Action: Examine prior RECLOAD error messages for causes for the failed records and address them.

ICUNOTENABLED

ICUNOTENABLED, ICU libraries not loaded

Run Time Warning: The operation required the library containing support for International
Components for Unicode (ICU) but GT.M could not find libicu. There may be other messages.

Action: If you require UTF-8 support, install an appropriate ICU library - see the GT.M Adinistration
and Operations Guide for information on ICU setup.

LOADRECCNT

LOADRECCNT, Last EXTRACT record processed by LOAD: RRRR

MUPIP Information: This message indicates number of records (RRRR) MUPIP LOAD processed. The
number of records represents the sum of header records, successfully loaded data records, and failed
records. Note LOAD may have stopped processing due to a record limit in the command or a <CTRL-
C>.

Action: Ensure the identified stopping point corresponds with your intentions.

MSTACKCRIT

MSTACKCRIT, User-specified M stack size critical threshold of xxxx not appropriate; must be
between mmmm and nnnn; reverting to kkkk

Run Time Error: The environment variable gtm_mstack_crit_threshold was set to an invalid value,
either too large, in which case GT.M uses the largest acceptable value or too low, in which case GT.M
uses the smallest acceptable value.

Action: If the adjusted value is unacceptable, revise or unset the environment variable.

NOFILTERNEST

NOFILTERNEST, Filter nesting not allowed

Run Time Error: Filter code must not invoke other code that requires a filter.

Action: Revise the filter code to adhere to the requirement.

PATALTER2LARGE

PATALTER2LARGE, Pattern match alternation exceeded the LLLL repetition limit on prospective
matches

REGFILENOTFOUND Error and Other Messages

GTM V6.3-005
FIS

February 05, 2019, Page 35

Run Time Error: An alternation pattern applied to a long occurrence of that pattern reached a GT.M
limit (LLLL) on tracking the match.

Action: Revise the logic to reduce the size of the string being matched or to otherwise break up the
match into smaller parts.

REGFILENOTFOUND

REGFILENOTFOUND, Database file DDDD corresponding to region RRRR cannot be found

MUPIP Error: This indicates MUPIP cannot locate the database file DDDD mapped to region RRRR.

Action: Ensure that the current global directory is the one intended and that it maps the file intended.
If the path is relative or includes environment variables, ensure that the current working directory and
any enironment variable are appropriate. Also ensure the file exists and has authorizations, including
its path, that make it available to the user attempting to access it. If the MUPIP command involves a
statsDB (for example MUPIP INTEG -STATS), ensure that the appropriate regions have STATS enabled,
that the $gtm_statsdir environment variable has been properly defined, and that other processes are
using shared statistics, as MUPIP by itself does not create new statsDB databases. Note that MUPIP
INTEG does not create statsDB and reports any that it skips with an informational message, but exits
with a normal status after such skips.

VIEWCMD

VIEWCMD, View parameter pppp is not valid with the VIEW command

Run Time Error: This indicates that the VIEW command has an argument pppp that is only valid with
the $VIEW() function.

Action: Modify the argument.

VIEWFN

VIEWFN, View parameter pppp is not valid with the VIEW command

Run Time Error: This indicates that the $VIEW() function has an argument pppp that is only valid with
the VIEW command.

Action: Modify the argument.

GTM V6.3-005
Page 36, February 05, 2019 FIS

	
	Table of Contents
	V6.3-005
	Overview
	Conventions
	Platforms
	Platform support lifecycle

	32- vs. 64-bit platforms
	Call-ins and External Calls
	Internationalization (Collation)
	Environment Translation

	Additional Installation Instructions
	
	Recompile
	Rebuild Shared Libraries or Images
	Compiling the Reference Implementation Plugin

	Upgrading to GT.M V6.3-005
	Stage 1: Global Directory Upgrade
	Stage 2: Database Files Upgrade
	Database Compatibility Notes

	Stage 3: Replication Instance File Upgrade
	Stage 4: Journal Files Upgrade
	Stage 5: Trigger Definitions Upgrade
	Downgrading to V5 or V4

	Managing M mode and UTF-8 mode
	Setting the environment variable TERM
	Installing Compression Libraries

	Change History
	V6.3-005

	Database
	Language
	System Administration
	Other
	Error and Other Messages
	COLLDATAEXISTS
	COMMFILTERERR
	EXTRINTEGRITY
	FAILEDRECCOUNT
	ICUNOTENABLED
	LOADRECCNT
	MSTACKCRIT
	NOFILTERNEST
	PATALTER2LARGE
	REGFILENOTFOUND
	VIEWCMD
	VIEWFN

