
GT.M
Release Notes
V6.3-003

FIS
Page 2, February 05, 2019 FIS

Contact Information

GT.M Group
Fidelity National Information Services, Inc.
200 Campus Drive
Collegeville, PA 19426
United States of America

GT.M Support for customers: gtmsupport@fisglobal.com
Automated attendant for 24 hour support: +1 (484) 302-3248
Switchboard: +1 (484) 302-3160
Website: http://fis-gtm.com

Legal Notice

Copyright © 2017-2019 Fidelity National Information Services, Inc. and/or its subsidiaries. All Rights Reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts and no Back-Cover Texts.

GT.M™ is a trademark of Fidelity National Information Services, Inc. Other trademarks are the property of their respective
owners.

This document contains a description of GT.M and the operating instructions pertaining to the various functions that
comprise the system. This document does not contain any commitment of FIS. FIS believes the information in this publication
is accurate as of its publication date; such information is subject to change without notice. FIS is not responsible for any errors
or defects.

Revision History

Revision 1.5 5 February 2019 Updated the Platforms section to add
AIX 7.1 TL 4 and AIX 7.2 as supported
versions; Correct the maximum V6
database size.

Revision 1.4 20 August 2018 Add GTM-9020 and GTM-9023.

Revision 1.3 19 June 2018 * Remove GTM-8859 as it was fixed in
GT.M V6.3-004.

* Make corrections to GTM-7986,
GTM-8732, GTM-8832 and
GTM-8880.

Revision 1.2 17 April 2018 Change category of GTM-8769 to

.

Revision 1.1 22 January 2018 * Updated for V6.3-003A. Added
GTM-8880, GTM-8887, and
GTM-8889.

* Added GTM-8846 and GTM-8873
which were missed in the
V6.3-003 Release Notes due to a
documentation error.

Revision 1.0 12 December 2017 V6.3-003

http://fis-gtm.com
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt

GT.M V6.3-003
FIS

February 05, 2019, Page iii

Table of Contents
V6.3-003A ... 1

Overview .. 1
Conventions ... 1
Platforms .. 3

Platform support lifecycle ... 5
32- vs. 64-bit platforms ... 5

Call-ins and External Calls .. 5
Internationalization (Collation) .. 6
Environment Translation ... 6

Additional Installation Instructions .. 7
.. 7

Upgrading to GT.M V6.3-003A .. 9
Stage 1: Global Directory Upgrade ... 9
Stage 2: Database Files Upgrade ... 10
Stage 3: Replication Instance File Upgrade .. 12
Stage 4: Journal Files Upgrade ... 13
Stage 5: Trigger Definitions Upgrade ... 13
Downgrading to V5 or V4 ... 14

Managing M mode and UTF-8 mode .. 15
Setting the environment variable TERM ... 17
Installing Compression Libraries .. 17

... 19
V6.3-003B .. 19
V6.3-003A ... 19
V6.3-003 .. 19

Database ... 23
Language .. 27
System Administration .. 31
Other .. 35
Error and Other Messages ... 37

DBFREEZEOFF ... 37
DBFREEZEON .. 37
DBNONUMSUBS .. 37
DBNULCOL ... 37
GBLOFLOW ... 38
LSINSERTED .. 38
MUTEXFRCDTERM .. 38
NULSUBSC .. 38
READONLYNOBG .. 39
REPLINSTACC ... 39
REPLINSTMISMTCH .. 39
REPLMULTINSTUPDATE ... 40
STACKCRIT ... 40

FIS
Page iv, February 05, 2019 FIS

STACKOFLOW .. 40
STPCRIT .. 40
STPOFLOW .. 40

GT.M V6.3-003
FIS

February 05, 2019, Page 1

V6.3-003A

Overview

V6.3-003B adds some capabilities to the restriction facility introduced in V6.3-002. It improves
performance when you have a large number of concurrent M LOCKs. While we have designated it as
field test grade, perhaps the biggest new thing is the ability for a process to access multiple instances
during its execution (GTM-8182). We are interested in your explorations of this and are ready to answer
questions you encounter as you explore the facility.

As always, the release bring numerous smaller enhancements, and fixes. See the Change History below.
Please pay special attention to the items marked with the symbols or

Note

Messages are not part of the GT.M API whose stability we strive to maintain. Make
sure that you review any automated scripting that parses GT.M messages.

Conventions

This document uses the following conventions:

Flag/Qualifiers -

Program Names or Functions upper case. For example, MUPIP BACKUP

Examples lower case. For example:
mupip backup -database ACN,HIST /backup

Reference Number A reference number is used to track software
enhancements and support requests.
It is enclosed between parentheses ().

Platform Identifier Where an item affects only specific platforms, the
platforms are listed in square brackets, e.g., [AIX]

Note

The term UNIX refers to the general sense of all platforms on which GT.M uses a
POSIX API. As of this date, this includes: AIX and GNU/Linux on x86 (32- and 64-
bits).

The following table summarizes the new and revised replication terminology and qualifiers.

V6.3-003A Conventions

FIS
Page 2, February 05, 2019 FIS

Pre V5.5-000 terminology Pre V5.5-000
qualifier

Current terminology Current qualifiers

originating instance or primary
instance

-rootprimary originating instance or
originating primary instance.

Within the context of a
replication connection between
two instances, an originating
instance is referred to as
source instance or source side.
For example, in an B<-A->C
replication configuration, A is
the source instance for B and C.

-updok
(recommended)

-rootprimary (still
accepted)

replicating instance (or
secondary instance) and
propagating instance

N/A for replicating
instance or
secondary instance.

-propagateprimary
for propagating
instance

replicating instance.

Within the context of a
replication connection between
two instances, a replicating
instance that receives updates
from a source instance is
referred to as receiving instance
or receiver side. For example,
in an B<-A->C replication
configuration, both B and C can
be referred to as a receiving
instance.

-updnotok

N/A N/A supplementary instance.

For example, in an A->P->Q
replication configuration, P is
the supplementary instance.
Both A and P are originating
instances.

-updok

Effective V6.0-000, GT.M documentation adopted IEC standard Prefixes for binary multiples. This
document therefore uses prefixes Ki, Mi and Ti (e.g., 1MiB for 1,048,576 bytes). Over time, we'll update
all GT.M documentation to this standard.

 denotes a new feature that requires updating the manuals.

 denotes a new feature or an enhancement that may not be upward compatible and may affect an
existing application.

 denotes deprecated messages.

 denotes revised messages.

 denotes added messages.

http://physics.nist.gov/cuu/Units/binary.html

Platforms V6.3-003A

GTM V6.3-003
FIS

February 05, 2019, Page 3

Platforms

Over time, computing platforms evolve. Vendors obsolete hardware architectures. New versions
of operating systems replace old ones. We at FIS continually evaluate platforms and versions of
platforms that should be Supported for GT.M. In the table below, we document not only the ones that
are currently Supported for this release, but also alert you to our future plans given the evolution of
computing platforms. If you are an FIS customer, and these plans would cause you hardship, please
contact your FIS account executive promptly to discuss your needs.

Each GT.M release is extensively tested by FIS on a set of specific versions of operating systems on
specific hardware architectures (the combination of operating system and hardware architecture is
referred to as a platform). This set of specific versions is considered Supported. There may be other
versions of the same operating systems on which a GT.M release may not have been tested, but
on which the FIS GT.M Group knows of no reason why GT.M would not work. This larger set of
versions is considered Supportable. There is an even larger set of platforms on which GT.M may well
run satisfactorily, but where the FIS GT.M team lacks the knowledge to determine whether GT.M is
Supportable. These are considered Unsupported. Contact FIS GT.M Support with inquiries about your
preferred platform.

As of the publication date, FIS supports this release on the hardware and operating system versions
below. Contact FIS for a current list of Supported platforms. The reference implementation of the
encryption plugin has its own additional requirements, should you opt to use it as included with GT.M.

Platform Supported
Versions

Notes

IBM Power Systems AIX 7.1 TL 4, 7.2 Only 64-bit versions of AIX with POWER7 as the minimum
required CPU architecture level are Supported.

While GT.M supports both UTF-8 mode and M mode on
this platform, there are problems with the AIX ICU utilities
that prevent FIS from testing 4-byte UTF-8 characters as
comprehensively on this platform as we do on others.

Running GT.M on AIX 7.1 requires APAR IZ87564, a fix for the
POW() function, to be applied. To verify that this fix has been
installed, execute instfix -ik IZ87564.

AIX 7.1 TL 5 is Supportable.

Only the AIX jfs2 filesystem is Supported. Other filesystems,
such as jfs1 are Supportable, but not Supported. FIS strongly
recommends use of the jfs2 filesystem on AIX; use jfs1 only for
existing databases not yet migrated to a jfs2 filesystem.

x86_64 GNU/Linux Red Hat
Enterprise
Linux 7.3;
Ubuntu 16.04
LTS

To run 64-bit GT.M processes requires both a 64-bit kernel as
well as 64-bit hardware.

GT.M should also run on recent releases of other major Linux
distributions with a contemporary Linux kernel (2.6.32 or

V6.3-003A Platforms

FIS
Page 4, February 05, 2019 FIS

Platform Supported
Versions

Notes

later), glibc (version 2.12 or later) and ncurses (version 5.7 or
later).

Due to build optimization and library incompatibilities, GT.M
versions older than V6.2-000 are incompatible with glibc
2.24 and up. This incompatibility has not been reported by
a customer, but was observed on internal test systems that
use the latest Linux software distributions from Fedora (26),
Debian (unstable), and Ubuntu (17.10). In internal testing,
processes either hung or encountered a segmentation violation
(SIG-11) during operation. Customers upgrading to Linux
distributions that utilize glibc 2.24+ must upgrade their GT.M
version at the same time as or before the OS upgrade.

GT.M requires the libtinfo library. If it is not already installed
on your system, and is available using the package manager,
install it using the package manager. If a libtinfo package is not
available:

* Find the directory where libncurses.so is installed on your
system.

* Change to that directory and make a symbolic link to
libncurses.so.<ver> from libtinfo.so.<ver>. Note that some of
the libncurses.so entries may themselves be symbolic links,
for example, libncurses.so.5 may itself be a symbolic link to
libncurses.so.5.9.

To support the optional WRITE /TLS fifth argument (the
ability to provide / override options in the tlsid section of the
encryption configuration file), the reference implementation of
the encryption plugin requires libconfig 1.4.x.

Although GT.M itself does not require libelf, the geteuid
program used by the GT.M installation script requires libelf
(packaged as libelf1 on current Debian/Ubuntu distributions
and elfutils-libelf on RHEL 6 & 7).

Only the ext4 and xfs filesystems are Supported.
Other filesystems are Supportable, but not Supported.
Furthermore, if you use the NODEFER_ALLOCATE
feature, FIS strongly recommends that you use xfs.
If you must use NODEFER_ALLOCATE with ext4,
you must ensure that your kernel includes commit
d2dc317d564a46dfc683978a2e5a4f91434e9711 (search for
d2dc317d564a46dfc683978a2e5a4f91434e9711 at https://
www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3).
The Red Hat Bugzilla identifier for the bug is 1213487. With

https://www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3
https://www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3

32- vs. 64-bit platforms V6.3-003A

GTM V6.3-003
FIS

February 05, 2019, Page 5

Platform Supported
Versions

Notes

NODEFER_ALLOCATE, do not use any filesystem other than
ext4 and a kernel with the fix, or xfs.

x86 GNU/Linux Debian 9
(Stretch)

This 32-bit version of GT.M runs on either 32- or 64-bit x86
platforms; we expect the x86_64 GNU/Linux version of GT.M
to be preferable on 64-bit hardware. Running a 32-bit GT.M on
a 64-bit GNU/Linux requires 32-bit libraries to be installed. The
CPU must have an instruction set equivalent to 586 (Pentium)
or better.

Please also refer to the notes above on x86_64 GNU/Linux.

Platform support lifecycle

FIS usually supports new operating system versions six months or so after stable releases are available
and we usually support each version for a two year window. GT.M releases are also normally supported
for two years after release. While FIS will attempt to provide support to customers in good standing for
any GT.M release and operating system version, our ability to provide support diminishes after the two
year window.

GT.M cannot be patched, and bugs are only fixed in new releases of software.

32- vs. 64-bit platforms

The same application code runs on both 32-bit and 64-bit platforms; however there are operational
differences between them (for example, auto-relink and the ability to use GT.M object code from shared
libraries exist only on 64-bit platforms). Please note that:

* You must compile the application code separately for each platform. Even though the M source code
is the same, the generated object modules are different - the object code differs between x86 and
x86_64.

* Parameter-types that interface GT.M with non-M code using C calling conventions must match
the data-types on their target platforms. Mostly, these parameters are for call-ins, external calls,
internationalization (collation) and environment translation, and are listed in the tables below. Note
that most addresses on 64-bit platforms are 8 bytes long and require 8 byte alignment in structures
whereas all addresses on 32-bit platforms are 4 bytes long and require 4-byte alignment in structures.

Call-ins and External Calls

Parameter type 32-Bit 64-bit Remarks

gtm_long_t 4-byte
(32-bit)

8-byte
(64-bit)

gtm_long_t is much the same as the C language long type.

V6.3-003A 32- vs. 64-bit platforms

FIS
Page 6, February 05, 2019 FIS

Parameter type 32-Bit 64-bit Remarks

gtm_ulong_t 4-byte 8-byte gtm_ulong_t is much the same as the C language unsigned
long type.

gtm_int_t 4-byte 4-byte gtm_int_t has 32-bit length on all platforms.

gtm_uint_t 4-byte 4-byte gtm_uint_t has 32-bit length on all platforms

Caution

If your interface uses gtm_long_t or gtm_ulong_t types but your interface code uses
int or signed int types, failure to revise the types so they match on a 64-bit platform
will cause the code to fail in unpleasant, potentially dangerous, and hard to diagnose
ways.

Internationalization (Collation)

Parameter type 32-Bit 64-bit Remarks

gtm_descriptor in
gtm_descript.h

4-byte 8-byte Although it is only the address within these types that
changes, the structures may grow by up to 8 bytes as a
result of compiler padding to meet platform alignment
requirements.

Important

Assuming other aspects of code are 64-bit capable, collation routines should require
only recompilation.

Environment Translation

Parameter type 32-Bit 64-bit Remarks

gtm_string_t type in
gtmxc_types.h

4-byte 8-byte Although it is only the address within these types that
changes, the structures may grow by up to 8 bytes as a
result of compiler padding to meet platform alignment
requirements.

Important

Assuming other aspects of code are 64-bit capable, environment translation routines
should require only recompilation.

Additional Installation Instructions V6.3-003A

GTM V6.3-003
FIS

February 05, 2019, Page 7

Additional Installation Instructions

To install GT.M, see the "Installing GT.M" section in the GT.M Administration and Operations
Guide. For minimal down time, upgrade a current replicating instance and restart replication. Once
that replicating instance is current, switch it to become the originating instance. Upgrade the prior
originating instance to become a replicating instance, and perform a switchover when you want it to
resume an originating primary role.

Caution

Never replace the binary image on disk of any executable file while it is in use by
an active process. It may lead to unpredictable results. Depending on the operating
system, these results include but are not limited to denial of service (that is, system
lockup) and damage to files that these processes have open (that is, database
structural damage).

* FIS strongly recommends installing each version of GT.M in a separate (new) directory, rather than
overwriting a previously installed version. If you have a legitimate need to overwrite an existing
GT.M installation with a new version, you must first shut down all processes using the old version.
FIS suggests installing GT.M V6.3-003A in a Filesystem Hierarchy Standard compliant location such
as /usr/lib/fis-gtm/V6.3-003A_arch (for example, /usr/lib/fis-gtm/V6.3-003A_x86 on 32-bit Linux
systems). A location such as /opt/fis-gtm/V6.3-003A_arch would also be appropriate. Note that the
arch suffix is especially important if you plan to install 32- and 64-bit versions of the same release of
GT.M on the same system.

* Use the appropriate MUPIP command (e.g. ROLLBACK, RECOVER, RUNDOWN) of the old GT.M
version to ensure all database files are cleanly closed.

* Make sure gtmsecshr is not running. If gtmsecshr is running, first stop all GT.M processes including
the DSE, LKE and MUPIP utilities and then perform a MUPIP STOP pid_of_gtmsecshr.

* Starting with V6.2-000, GT.M no longer supports the use of the deprecated $gtm_dbkeys and the
master key file it points to for database encryption. To convert master files to the libconfig format,

please click to download the CONVDBKEYS.m program and follow instructions in the comments
near the top of the program file. You can also download CONVDBKEYS.m from http://tinco.pair.com/
bhaskar/gtm/doc/articles/downloadables/CONVDBKEYS.m. If you are using $gtm_dbkeys for
database encryption, please convert master key files to libconfig format immediately after upgrading
to V6.2-000 or later. Also, modify your environment scripts to include the use of gtmcrypt_config
environment variable.

Recompile

* Recompile all M and C source files.

http://tinco.pair.com/bhaskar/gtm/doc/articles/downloadables/CONVDBKEYS.m

V6.3-003A Additional Installation Instructions

FIS
Page 8, February 05, 2019 FIS

Rebuild Shared Libraries or Images

* Rebuild all Shared Libraries after recompiling all M and C source files.

* If your application is not using object code shared using GT.M's auto-relink functionality, please
consider using it.

Compiling the Reference Implementation Plugin

If you plan to use database encryption and TLS replication, you must compile the reference
implementation plugin to match the shared library dependencies unique to your platform. The
instructions for compiling the Reference Implementation plugin are as follows:

1. Install the development headers and libraries for libgcrypt, libgpgme, libconfig, and libssl. On
Linux, the package names of development libraries usually have a suffix such as -dev or -devel and
are available through the package manager. For example, on Ubuntu_x86_64 a command like the
following installs the required development libraries:

sudo apt-get install libgcrypt11-dev libgpgme11-dev libconfig-dev libssl-dev

Note that the package names may vary by distribution / version.

2. Unpack $gtm_dist/plugin/gtmcrypt/source.tar to a temporary directory.

mkdir /tmp/plugin-build
cd /tmp/plugin-build
cp $gtm_dist/plugin/gtmcrypt/source.tar .
tar -xvf source.tar

3. Follow the instructions in the README.

* Open Makefile with your editor; review and edit the common header (IFLAGS) and library paths
(LIBFLAGS) in the Makefile to reflect those on your system.

* Define the gtm_dist environment variable to point to the absolute path for the directory where
you have GT.M installed

* Copy and paste the commands from the README to compile and install the encryption plugin
with the permissions defined at install time

Caution

There are separate steps to compile the encryption plugin for GT.M versions
V5.3-004 through V6.3-000 when OpenSSL 1.1 is installed and OpenSSL 1.0.x libraries
arestill available.

* Download the most recent OpenSSL 1.0.x version

* Compile and install (default installs to /usr/local/ssl)

Upgrading to GT.M V6.3-003A V6.3-003A

GTM V6.3-003
FIS

February 05, 2019, Page 9

./config && make install

* Adjust the configuration : Move the newly installed libraries out of the way

mv /usr/local/ssl/lib /usr/local/ssl/lib.donotuse

* Adjust the configuration : Create another /usr/local/ssl/lib and symlink the
existing 1.0.x library into it as the default. This ensures that the encryption plugin
is compiled using the compatible OpenSSL 1.0.x library. Adjust the path below as
necessary.

mkdir /usr/local/ssl/lib && ln -s /path/to/existing/libssl.so.1.0.x /usr/
local/ssl/libssl.so

* Recompile the encryption plugin following existing directions above

* Remove /usr/local/ssl to avoid future complications

Upgrading to GT.M V6.3-003A

The GT.M database consists of four types of components- database files, journal files, global directories,
and replication instance files. The format of some database components differs for 32-bit and 64-bit
GT.M releases for the x86 GNU/Linux platform.

GT.M upgrade procedure for V6.3-003A consists of 5 stages:

* Stage 1: Global Directory Upgrade

* Stage 2: Database Files Upgrade

* Stage 3: Replication Instance File Upgrade

* Stage 4: Journal Files Upgrade

* Stage 5: Trigger Definitions Upgrade

Read the upgrade instructions of each stage carefully. Your upgrade procedure for GT.M V6.3-003A
depends on your GT.M upgrade history and your current version.

Stage 1: Global Directory Upgrade

FIS strongly recommends you back up your Global Directory file before upgrading. There is no one-step
method for downgrading a Global Directory file to an older format.

To upgrade from any previous version of GT.M:

* Open your Global Directory with the GDE utility program of GT.M V6.3-003A.

V6.3-003A Upgrading to GT.M V6.3-003A

FIS
Page 10, February 05, 2019 FIS

* Execute the EXIT command. This command automatically upgrades the Global Directory.

To switch between 32- and 64-bit global directories on the x86 GNU/Linux platform:

1. Open your Global Directory with the GDE utility program on the 32-bit platform.

2. On GT.M versions that support SHOW -COMMAND, execute SHOW -COMMAND -FILE=file-name.
This command stores the current Global Directory settings in the specified file.

3. On GT.M versions that do not support GDE SHOW -COMMAND, execute the SHOW -ALL
command. Use the information from the output to create an appropriate command file or use it as a
guide to manually enter commands in GDE.

4. Open GDE on the 64-bit platform. If you have a command file from 2. or 3., execute @file-name
and then run the EXIT command. These commands automatically create the Global Directory.
Otherwise use the GDE output from the old Global Directory and apply the settings in the new
environment.

An analogous procedure applies in the reverse direction.

If you inadvertently open a Global Directory of an old format with no intention of upgrading it, execute
the QUIT command rather than the EXIT command.

If you inadvertently upgrade a global directory, perform the following steps to downgrade to an old
GT.M release:

* Open the global directory with the GDE utility program of V6.3-003A.

* Execute the SHOW -COMMAND -FILE=file-name command. This command stores the current
Global Directory settings in the file-name command file. If the old version is significantly out of date,
edit the command file to remove the commands that do not apply to the old format. Alternatively,
you can use the output from SHOW -ALL or SHOW -COMMAND as a guide to manually enter
equivalent GDE commands for the old version.

Stage 2: Database Files Upgrade

To upgrade from GT.M V5.0*/V5.1*/V5.2*/V5.3*/V5.4*/V5.5:

A V6 database file is a superset of a V5 database file and has potentially longer keys and records.
Therefore, upgrading a database file requires no explicit procedure. After upgrading the Global
Directory, opening a V5 database with a V6 process automatically upgrades fields in the database
fileheader.

A database created with V6 supports up to 992Mi blocks and is not backward compatible. V6 databases
that take advantage of V6 limits on key size and records size cannot be downgraded. Use MUPIP
DOWNGRADE -VERSION=V5 to downgrade a V6 database back to V5 format provided it meets
the database downgrade requirements. For more information on downgrading a database, refer to
Downgrading to V5 or V4.

Upgrading to GT.M V6.3-003A V6.3-003A

GTM V6.3-003
FIS

February 05, 2019, Page 11

Important

A V5 database that has been automatically upgraded to V6 can perform all GT.M
V6.3-003A operations. However, that database can only grow to the maximum size
of the version in which it was originally created. A database created on V5.0-000
through V5.3-003 has maximum size of 128Mi blocks. A database created on V5.4-000
through V5.5-000 has a maximum size of 224Mi blocks. A database file created with
V6.0-000 (or above) can grow up to a maximum of 992Mi blocks. This means that, for
example, the maximum size of a V6 database file having 8KiB block size is 7936GiB
(8KiB*992Mi).

Important

In order to perform a database downgrade you must perform a MUPIP INTEG -
NOONLINE. If the duration of the MUPIP INTEG exceeds the time allotted for an
upgrade you should rely on a rolling upgrade scheme using replication.

If your database has any previously used but free blocks from an earlier upgrade cycle (V4 to V5),
you may need to execute the MUPIP REORG -UPGRADE command. If you have already executed the
MUPIP REORG -UPGRADE command in a version prior to V5.3-003 and if subsequent versions cannot
determine whether MUPIP REORG -UPGRADE performed all required actions, it sends warnings to
the syslog requesting another run of MUPIP REORG -UPGRADE. In that case, perform any one of the
following steps:

* Execute the MUPIP REORG -UPGRADE command again, or

* Execute the DSE CHANGE -FILEHEADER -FULLY_UPGRADED=1 command to stop the warnings.

Caution

Do not run the DSE CHANGE -FILEHEADER -FULLY_UPGRADED=1 command
unless you are absolutely sure of having previously run a MUPIP REORG -
UPGRADE from V5.3-003 or later. An inappropriate DSE CHANGE -FILEHEADE -
FULLY_UPGRADED=1 may lead to database integrity issues.

You do not need to run MUPIP REORG -UPGRADE on:

* A database that was created by a V5 MUPIP CREATE

* A database that has been completely processed by a MUPIP REORG -UPGRADE from V5.3-003 or
later.

For additional upgrade considerations, refer to Database Compatibility Notes.

To upgrade from a GT.M version prior to V5.000:

You need to upgrade your database files only when there is a block format upgrade from V4 to V5.
However, some versions, for example, database files which have been initially been created with V4

V6.3-003A Upgrading to GT.M V6.3-003A

FIS
Page 12, February 05, 2019 FIS

(and subsequently upgraded to a V5 format) may additionally need a MUPIP REORG -UPGRADE
operation to upgrade previously used but free blocks that may have been missed by earlier upgrade
tools.

* Upgrade your database files using in-place or traditional database upgrade procedure depending
on your situation. For more information on in-place/traditional database upgrade, see Database
Migration Technical Bulletin.

* Run the MUPIP REORG -UPGRADE command. This command upgrades all V4 blocks to V5 format.

Note

Databases created with GT.M releases prior to V5.0-000 and upgraded to a V5 format
retain the maximum size limit of 64Mi (67,108,864) blocks.

Database Compatibility Notes

* Changes to the database file header may occur in any release. GT.M automatically upgrades database
file headers as needed. Any changes to database file headers are upward and downward compatible
within a major database release number, that is, although processes from only one GT.M release can
access a database file at any given time, processes running different GT.M releases with the same
major release number can access a database file at different times.

* Databases created with V5.3-004 through V5.5-000 can grow to a maximum size of 224Mi
(234,881,024) blocks. This means, for example, that with an 8KiB block size, the maximum database
file size is 1,792GiB; this is effectively the size of a single global variable that has a region to itself and
does not itself span regions; a database consists of any number of global variables. A database created
with GT.M versions V5.0-000 through V5.3-003 can be upgraded with MUPIP UPGRADE to increase
the limit on database file size from 128Mi to 224Mi blocks.

* Databases created with V5.0-000 through V5.3-003 have a maximum size of 128Mi (134, 217,728)
blocks. GT.M versions V5.0-000 through V5.3-003 can access databases created with V5.3-004 and
later as long as they remain within a 128Mi block limit.

* Database created with V6.0-000 or above have a maximum size of 1,040,187,392(992Mi) blocks.

* For information on downgrading a database upgraded from V6 to V5, refer to: Downgrading to V5 or
V4.

Stage 3: Replication Instance File Upgrade

V6.3-003A does not require new replication instance files if you are upgrading from V5.5-000. However,
V6.3-003A requires new replication instance files if you are upgrading from any version prior to
V5.5-000. Instructions for creating new replication instance files are in the Database Replication chapter
of the GT.M Administration and Operations Guide. Shut down all Receiver Servers on other instances
that are to receive updates from this instance, shut down this instance Source Server(s), recreate the

http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_Database_Migration.html
http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_Database_Migration.html
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch07.html

Upgrading to GT.M V6.3-003A V6.3-003A

GTM V6.3-003
FIS

February 05, 2019, Page 13

instance file, restart the Source Server(s) and then restart any Receiver Server for this instance with the
-UPDATERESYNC qualifier.

Note

Without the -UPDATERESYNC qualifier, the replicating instance synchronizes with
the originating instance using state information from both instances and potentially
rolling back information on the replicating instance. The -UPDATERESYNC qualifier
declares the replicating instance to be in a wholesome state matching some prior (or
current) state of the originating instance; it causes MUPIP to update the information
in the replication instance file of the originating instance and not modify information
currently in the database on the replicating instance. After this command, the
replicating instance catches up to the originating instance starting from its own
current state. Use -UPDATERESYNC only when you are absolutely certain that
the replicating instance database was shut down normally with no errors, or
appropriately copied from another instance with no errors.

Important

You must always follow the steps described in the Database Replication chapter of
the GT.M Administration and Operations Guide when migrating from a logical dual
site (LDS) configuration to an LMS configuration, even if you are not changing GT.M
releases.

Stage 4: Journal Files Upgrade

On every GT.M upgrade:

* Create a fresh backup of your database.

* Generate new journal files (without back-links).

Important

This is necessary because MUPIP JOURNAL cannot use journal files from a release
other than its own for RECOVER, ROLLBACK, or EXTRACT.

Stage 5: Trigger Definitions Upgrade

If you are upgrading from V5.4-002A/V5.4-002B/V5.5-000 to V6.3-003A and you have database triggers
defined in V6.2-000 or earlier, you need to ensure that your trigger definitions are wholesome in the
older version and then run MUPIP TRIGGER -UPGRADE. If you have doubts about the wholesomeness
of the trigger definitions in the old version use the instructions below to capture the definitions delete
them in the old version (-*), run MUPIP TRIGGER -UPGRADE in V6.3-003A and then reload them as
described below.

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch07.html

V6.3-003A Upgrading to GT.M V6.3-003A

FIS
Page 14, February 05, 2019 FIS

You need to extract and reload your trigger definitions only if you are upgrading from V5.4-000/
V5.4-000A/V5.4-001 to V6.3-003A or if you find your prior version trigger definitions have problems.
For versions V5.4-000/V5.4-000A/V5.4-001 this is necessary because multi-line XECUTEs for triggers
require a different internal storage format for triggers which makes triggers created in V5.4-000/
V5.4-000A/V5.4-001 incompatible with V5.4-002/V5.4-002A/V5.4-002B/V5.5-000/V6.0-000/V6.0-001/
V6.3-003A.

To extract and reapply the trigger definitions on V6.3-003A using MUPIP TRIGGER:

1. Using the old version, execute a command like mupip trigger -select="*" trigger_defs.trg. Now,
the output file trigger_defs.trg contains all trigger definitions.

2. Place -* at the beginning of the trigger_defs.trg file to remove the old trigger definitions.

3. Using V6.3-003A, run mupip trigger -triggerfile=trigger_defs.trg to reload your trigger
definitions.

To extract and reload trigger definitions on a V6.3-003A replicating instance using $ZTRIGGER():

1. Shut down the instance using the old version of GT.M.

2. Execute a command like mumps -run %XCMD 'i $ztrigger("select")' > trigger_defs.trg . Now,
the output file trigger_defs.trg contains all trigger definitions.

3. Turn off replication on all regions.

4. Run mumps -run %XCMD 'i $ztrigger("item","-*") to remove the old trigger definitions.

5. Perform the upgrade procedure applicable for V6.3-003A.

6. Run mumps -run %XCMD 'if $ztrigger("file","trigger_defs.trg")' to reapply your trigger
definitions.

7. Turn replication on.

8. Connect to the originating instance.

Note

Reloading triggers renumbers automatically generated trigger names.

Downgrading to V5 or V4

You can downgrade a GT.M V6 database to V5 or V4 format using MUPIP DOWNGRADE.

Starting with V6.0-000, MUPIP DOWNGRADE supports the -VERSION qualifier with the following
format:

MUPIP DOWNGRADE -VERSION=[V5|V4]

Managing M mode and UTF-8 mode V6.3-003A

GTM V6.3-003
FIS

February 05, 2019, Page 15

-VERSION specifies the desired version for the database header.

To qualify for a downgrade from V6 to V5, your database must meet the following
requirements:

1. The database was created with a major version no greater than the target version.

2. The database does not contain any records that exceed the block size (spanning nodes).

3. The sizes of all the keys in database are less than 256 bytes.

4. There are no keys present in database with size greater than the Maximum-Key-Size specification in
the database header, that is, Maximum-Key-Size is assured.

5. The maximum Record size is small enough to accommodate key, overhead, and value within a block.

To verify that your database meets all of the above requirements, execute MUPIP INTEG -NOONLINE.
Note that the integrity check requires the use of -NOONLINE to ensure no concurrent updates
invalidate the above requirements. Once assured that your database meets all the above requirements,
MUPIP DOWNGRADE -VERSION=V5 resets the database header to V5 elements which makes it
compatible with V5 versions.

To qualify for a downgrade from V6 to V4, your database must meet the same downgrade requirements
that are there for downgrading from V6 to V5.

If your database meets the downgrade requirements, perform the following steps to downgrade to V4:

1. In a GT.M V6.3-003A environment:

a. Execute MUPIP SET -VERSION=v4 so that GT.M writes updates blocks in V4 format.

b. Execute MUPIP REORG -DOWNGRADE to convert all blocks from V6 format to V4 format.

2. Bring down all V6 GT.M processes and execute MUPIP RUNDOWN -FILE on each database file to
ensure that there are no processes accessing the database files.

3. Execute MUPIP DOWNGRADE -VERSION=V4 to change the database file header from V6 to V4.

4. Restore or recreate all the V4 global directory files.

5. Your database is now successfully downgraded to V4.

Managing M mode and UTF-8 mode

With International Components for Unicode (ICU) version 3.6 or later installed, GT.M's UTF-8 mode
provides support for Unicode® (ISO/IEC-10646) character strings. On a system that does not have ICU
3.6 or later installed, GT.M only supports M mode.

On a system that has ICU installed, GT.M optionally installs support for both M mode and UTF-8
mode, including a utf8 subdirectory of the directory where GT.M is installed. From the same source

http://icu-project.org

V6.3-003A Managing M mode and UTF-8 mode

FIS
Page 16, February 05, 2019 FIS

file, depending upon the value of the environment variable gtm_chset, the GT.M compiler generates
an object file either for M mode or UTF-8 mode. GT.M generates a new object file when it finds both
a source and an object file, and the object predates the source file and was generated with the same
setting of $gtm_chset/$ZCHset. A GT.M process generates an error if it encounters an object file
generated with a different setting of $gtm_chset/$ZCHset than that processes' current value.

Always generate an M object module with a value of $gtm_chset/$ZCHset matching the value
processes executing that module will have. As the GT.M installation itself contains utility programs
written in M, their object files also conform to this rule. In order to use utility programs in both
M mode and UTF-8 mode, the GT.M installation ensures that both M and UTF-8 versions of object
modules exist, the latter in the utf8 subdirectory. This technique of segregating the object modules by
their compilation mode prevents both frequent recompiles and errors in installations where both modes
are in use. If your installation uses both modes, consider a similar pattern for structuring application
object code repositories.

GT.M is installed in a parent directory and a utf8 subdirectory as follows:

* Actual files for GT.M executable programs (mumps, mupip, dse, lke, and so on) are in the parent
directory, that is, the location specified for installation.

* Object files for programs written in M (GDE, utilities) have two versions - one compiled with support
for UTF-8 mode in the utf8 subdirectory, and one compiled without support for UTF-8 mode in the
parent directory. Installing GT.M generates both versions of object files, as long as ICU 3.6 or greater
is installed and visible to GT.M when GT.M is installed, and you choose the option to install UTF-8
mode support. Note that on 64-bit versions of GT.M, the object code is in shared libraries, rather than
individual files in the directory.

* The utf8 subdirectory has files called mumps, mupip, dse, lke, and so on, which are relative symbolic
links to the executables in the parent directory (for example, mumps is the symbolic link ../mumps).

* When a shell process sources the file gtmprofile, the behavior is as follows:

* If $gtm_chset is "m", "M" or undefined, there is no change from the previous GT.M versions to the
value of the environment variable $gtmroutines.

* If $gtm_chset is "UTF-8" (the check is case-insensitive),

* $gtm_dist is set to the utf8 subdirectory (that is, if GT.M is installed in /usr/lib/fis-gtm/
gtm_V6.3-003A_i686, then gtmprofile sets $gtm_dist to /usr/lib/fis-gtm/gtm_V6.3-003A_i686/
utf8).

* On platforms where the object files have not been placed in a libgtmutil.so shared library,
the last element of $gtmroutines is $gtm_dist($gtm_dist/..) so that the source files in the
parent directory for utility programs are matched with object files in the utf8 subdirectory. On
platforms where the object files are in libgtmutil.so, that shared library is the one with the object
files compiled in the mode for the process.

For more information on gtmprofile, refer to the Basic Operations chapter of GT.M Administration and
Operations Guide.

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch03.html

Setting the environment variable TERM V6.3-003A

GTM V6.3-003
FIS

February 05, 2019, Page 17

Although GT.M uses ICU for UTF-8 operation, ICU is not FIS software and FIS does not support ICU.

Setting the environment variable TERM

The environment variable TERM must specify a terminfo entry that accurately matches the terminal
(or terminal emulator) settings. Refer to the terminfo man pages for more information on the terminal
settings of the platform where GT.M needs to run.

* Some terminfo entries may seem to work properly but fail to recognize function key sequences or
fail to position the cursor properly in response to escape sequences from GT.M. GT.M itself does
not have any knowledge of specific terminal control characteristics. Therefore, it is important to
specify the right terminfo entry to let GT.M communicate correctly with the terminal. You may need
to add new terminfo entries depending on your specific platform and implementation. The terminal
(emulator) vendor may also be able to help.

* GT.M uses the following terminfo capabilities. The full variable name is followed by the capname in
parenthesis:

auto_right_margin(am), clr_eos(ed), clr_eol(el), columns(cols), cursor_address(cup),
 cursor_down(cud1), cursor_left(cub1), cursor_right(cuf1), cursor_up(cuu1),
 eat_newline_glitch(xenl), key_backspace(kbs), key_dc(kdch1),key_down(kcud1),
 key_left(kcub1), key_right(kcuf1), key_up(kcuu1), key_insert(kich1),
 keypad_local(rmkx),keypad_xmit(smkx), lines(lines).

GT.M sends keypad_xmit before terminal reads for direct mode and READs (other than READ *) if
EDITING is enabled. GT.M sends keypad_local after these terminal reads.

Installing Compression Libraries

If you plan to use the optional compression facility for replication, you must provide the compression
library. The GT.M interface for compression libraries accepts the zlib compression libraries without
any need for adaptation. These libraries are included in many UNIX distributions and are downloadable
from the zlib home page. If you prefer to use other compression libraries, you need to configure or
adapt them to provide the same API as that provided by zlib.

If a package for zlib is available with your operating system, FIS suggests that you use it rather than
building your own.

By default, GT.M searches for the libz.so shared library in the standard system library directories (for
example, /usr/lib, /usr/local/lib, /usr/local/lib64). If the shared library is installed in a non-standard
location, before starting replication, you must ensure that the environment variable LIBPATH (AIX)
or LD_LIBRARY_PATH (GNU/Linux) includes the directory containing the library. The Source and
Receiver Server link the shared library at runtime. If this fails for any reason (such as file not found,
or insufficient authorization), the replication logic logs a DLLNOOPEN error and continues with no
compression.

Although GT.M uses a library such as zlib for compression, such libraries are not FIS software and FIS
does not support any compression libraries.

http://www.zlib.net

GTM V6.3-003
Page 18, February 05, 2019 FIS

GT.M V6.3-003
FIS

February 05, 2019, Page 19

V6.3-003B

Fixes and enhancements specific to V6.3-003B:

Id Prior Id Category Summary

GTM-9020 - DB Prevent problems when the LOCK space
fills.

GTM-9023 - DB Fix rare, but serious issues with LOCKs by
reverting GTM-8680

V6.3-003A

Fixes and enhancements specific to V6.3-003A:

Id Prior Id Category Summary

GTM-8880 - Language Fix issue with (non-default) Standard
Boolean evaluation with side-effects and
certain patterns

GTM-8887 - Other Fix rare timer issue

GTM-8889 - Other Prevent UNDEF error after <CTRL-C>
within ZHELP navigation

V6.3-003

Fixes and enhancements specific to V6.3-003:

Id Prior Id Category Summary

GTM-4212 C9C03-001944 Admin MUPIP better deals with over length file
names

GTM-6115 C9I01-002944 Language Please see GTM-8694

GTM-7986 - Language Warning on implicit wrapping of source
lines exceeding maximum supported length

GTM-8182 - DB Allow updating globals belonging to
different instances

GTM-8186 - Language Accept offset alone for an entryref in DO,
GOTO and ZGOTO

#GTM-8792

V6.3-003

FIS
Page 20, February 05, 2019 FIS

Id Prior Id Category Summary

GTM-8587 - Language Maintain $DEVICE and $KEY for all
supported devices

GTM-8617 - Admin MUPIP SET supports N[ULL_SUBSCRIPTS]
and STD[NULLCOLL] qualifiers.

GTM-8680 - DB LOCK Improvements

GTM-8732 - Admin Better validation for MUPIP REPLICATE
-LOG_INTERVAL and -HELPER, and
MUPIP SET -DEFER_TIME

GTM-8735 - Admin READ_ONLY characteristic to prevent
state changes to MM databases

GTM-8754 - Other Prevent odd ASYNCIO deadlock

GTM-8767 - Admin MUPIP SET -HARD_SPIN_COUNT and -
SPIN_SLEEP_MASK support

GTM-8769 - Language Syntax check $ETRAP, $ZSTEP,
$ZTRAP, and EXCEPTION when specified

GTM-8779 - Admin Freeze Notification

GTM-8780 - Language Fix $SELECT() handling of certain syntax
errors

GTM-8781 - Other Prevent memory leak in ZSYSTEM

GTM-8786 - Language $NAME() of a naked reference returns
any current extended reference

GTM-8787 - Admin MUPIP JOURNAL -EXTRACT='-stdout'
doesn't explode at termination if stdout is
gone

GTM-8788 - Language The compiler excludes BLKTODEEP lines
from the object files

GTM-8789 - Language Prevent NEW $ZGBLDIR from setting up
an Update Process failure

GTM-8790 - DB Retain any extended first reference in
$REFERENCE when sharing statistics

GTM-8792 C9I01-002944 Language Prevent keys that exceed the supported
maximum string length

V6.3-003

GTM V6.3-003
FIS

February 05, 2019, Page 21

Id Prior Id Category Summary

GTM-8794 - Admin MUPIP RUNDOWN -OVERRIDE works
on a non-MUPIP backup made during an
Instance Freeze

GTM-8795 - DB Journal Updates promptly during MUPIP
FREEZE -ONLINE

GTM-8796 - DB Improved error handling during TP and
mini transaction commits

GTM-8797 - Admin Installation script fixes

GTM-8798 - Admin MUPIP ENDIANCVT converts Mutex
Queue Slots

GTM-8799 - Other Improve performance for a pattern of local
variable creation

GTM-8801 - Other cmake build produces appropriate support
for the ^%YGBLSTATS utility.

GTM-8804 - Language ZSHOW "T" option to return summary for
ZSHOW "GL"

GTM-8805 - DB Fix to havesting of LOCKs abandoned by
an abnormally terminated process

GTM-8832 - Language Appropriately report NUMOFLOW for
string literal with a huge value when used
as a number

GTM-8839 - Language $DEVICE shows the full error message

GTM-8840 - Admin Normalized gtmsecshr message
severities

GTM-8842 - Admin ZBREAK and ZSTEP restricted in triggers
when TRIGGER_MOD is restricted

GTM-8844 - Admin Restriction available for HALT and
ZHALT; ZGOTO 0 can return a non-zero
status to the shell

GTM-8846 - Admin GT.M accepts multi-slash journal file
names

GTM-8847 - Language Provide a way to detect and limit process
private heap storage

GTM-8849 - Other Help databases built with make files
have QDBRUNDOWN and NOGVSTATS
characteristics

V6.3-003

FIS
Page 22, February 05, 2019 FIS

Id Prior Id Category Summary

GTM-8850 - DB Allow process exit when MUPIP FREEZE -
ONLINE is in place

GTM-8854 - Language Compiler handles a syntax error after a
literal postconditional that's FALSE

GTM-8855 - Other Prevent memory leak from an error
locating a global directory

GTM-8856 - Language Defer failing evaluations of literal pattern
matches to run time

GTM-8857 - Language Improve error detection for certain pattern
match cases

GTM-8858 - DB Improve available information in cases of
apparent database integrity issues

GTM-8866 - Language Prevent timeouts with more than three
decinal digits from being too long

GTM-8873 - DB Prevent occasional $ORDER(,-1) problem

GT.M V6.3-003
FIS

February 05, 2019, Page 23

Database

* GT.M allows updating globals belonging to a different source instance using extended global
references or SET $ZGBLDIR. While the replication setup remains the same, these are the main
considerations:

1. Use one of two ways to identify the current instance as specified by a replication instance file:

a. A global directory can define a mapping to a replication instance file as specified with a GDE
CHANGE -INSTANCE -FILE_NAME=<replication_instance_file> command. When a global
directory is use, if it has a mapping of an instance file, that mapping overrides any setting of
the gtm_repl_instance environment variable. GDE CHANGE -INSTANCE -FILE_NAME=""
removes any global directory mapping for an instance file.

b. The gtm_repl_instance environment variable specifies a replication instance file for utilities,
and, as the default, whenever a user processes relies on a global directory with no instance file
specification.

2. In order to use multiple instances, at least one global directory must have an instance mapping.

3. A replication instance file cannot share any region with another instance file.

4. The Source Servers of all the instances have properly set up Replication Journal Pools.

5. A TP transaction or a trigger, as it always executes within a TP transaction, must always restrict
updates to globals in one replicating instance.

Notes

* Like other mapping specified by a global directory, a process determines any
instance mapping by a global directory at the time a process first uses uses
the global directory. Processes other than MUPIP CREATE ignore other (non-
mapping) global directory database characteristics, except for collation, which
interacts with mapping.

* When Instance Freeze is enabled (gtm_custom_errors is appropriately defined), a
process attaches a region to an instance at the first access to the region; the access
may be a read or a VIEW/$VIEW(). Otherwise, the process attaches to a region at
the first update to that region. When the mappings are correct, this difference does
not matter.

* A process can always update globals that are not in a replicated region.

* Use $VIEW("JNLPOOL") to determine the state of the current Journal Pool.
$VIEW("JNLPOOL") returns the replication instance file name for the current
Journal Pool and an empty string when there is no Journal Pool. Note that the

Database

FIS
Page 24, February 05, 2019 FIS

current Journal Pool may not be associated with the last global accessed by an
extended reference.

Example:

An EHR application uses a BC replication configuration (A->B) to provide continuous availability.
There are two data warehouses for billing information and medical history. For research purposes,
the data in these medical history warehouses is cleansed of patient identifiers. Two SI replication
instances (P->Q) are setup for the two data warehouses.

The primary global directory (specified via the environment variable gtmgbldir) includes the regions
needed for the application proper. It may have the instance file as specified in the global directory
or via the environment variable gtm_repl_instance. Each warehouse instance would have its own
global directory (e.g. p.gld and q.gld). These global directories have an instance file specified with
GDE CHANGE -INSTANCE -FILE_NAME=<replication_instance_file>.

Such a replication setup may benefit from this facility in the following ways:

1. A trigger on the primary database A uses normal global references to update a staging global (say
^%BACKLOG) in a non-replicated region of A to store information meant for the warehouses.
At an appropriate time, a separate batch process runs across the ^%BACKLOG staging global
and applies updates using extended references to P or Q using a transaction or non-TP. If the
transaction succeeds, the process removes the applied updates from ^%BACKLOG. Locks control
access to ^%BACKLOG and enforce the serialization of updates to P

OR

2. The application does not use triggers but updates a global on A in a transaction. If the transaction
succeeds, the application starts two more transactions for the warehouses. The second transaction
uses extended references to update P. If it fails, the application updates ^%BACKLOG("P") on a
non-replicated region of A. The third transaction uses extended references to update Q. If it fails,
the application updates ^%BACKLOG("Q") on a non-replicated region of A. A batch process runs
periodically to apply updates from ^%BACKLOG to P and Q using TP or non-TP and remove
updates that have been applied. This batch process uses LOCKs to control access and enforce
serialization of updates to P and Q.

Because this functionality has a wide variety of user stories (use cases) and has substantial
complexity, although the code appears robust, we are not confident that we have exercised a
sufficient breadth of use cases in our testing. Also, we may make changes in future releases that are
not entirely backwards compatible. We encourage you to use this facility in development and testing,
and to provide us with feedback. If you are an FIS customer and wish to use this in production, please
contact us beforehand to discuss your use case(s). (GTM-8182)

* GT.M LOCK commands perform better with large numbers of locks, and particularly with large
numbers of processes acquiring the locks. Previously processes acquiring locks could encounter
significant slowdown and lock timeouts as the number of locks and competing processes increased.
This change requires additional memory per lock slot, so administrators should monitor lock slots
(LKE SHOW) to determine if they need to increase lock space needs.

Database

GTM V6.3-003
FIS

February 05, 2019, Page 25

The GDE -LOCK_SPACE segment qualifier and MUPIP SET -LOCK_SPACE qualifier accept a
maximum value of 262144 pages. Previously the maximum value was 65536 pages.

LKE SHOW includes a LOCKSPACEINFO message in its output for regions with a BG or MM access
method. This message provides additional information on the use of LOCK space. Previously LKE
only issued this message when the lock space was exhausted.
(GTM-8680)

* When the first reference to a database for which a process has statistics sharing enabled is an
extended reference, $REFERENCE maintains the extended reference. A regression associated with the
implementation of statistics sharing in V6.3-001[A] caused this unusual case to lose that information.
This was only ever observed in the GT.M development environment and has never been reported
from a customer site. (GTM-8790)

* GT.M keeps journal files up to date while a MUPIP FREEZE -ONLINE is in place. Previously the
journal files would only be updated when there was a large amount of journal activity or the freeze
was removed. (GTM-8795)

* GT.M correctly handles any errors in the middle of a transaction commit. In GT.M V6.3-002, due
to a regression introduced by GTM-8436, it was possible in very rare scenarios for a critical section
deadlock. This issue was only observed in the GT.M development environment, and was never
reported by a user. (GTM-8796)

* GT.M manages LOCK concurrency correctly when checking for abandoned LOCKs. In V6.3-002 it
could prematurely or belatedly determine that a LOCK was abandoned. (GTM-8805)

* GT.M processes detach from database files correctly when a FREEZE -ONLINE is in place. Previously
a process could hang waiting on a critical resource while trying to detach, which typically occurs
when the process is trying to exit. (GTM-8850)

* Improve available information in cases of apparent database integrity issues. (GTM-8858)

* GT.M properly handles retries involving $ORDER(gvn,-1) or $ZPREVIOUS(gvn) functions.
Previously, with certain key combinations, the retry processing could overflow a buffer, leading
to memory corruption. The workaround was for any process using $$ORDER(,-1) in a region to
previously have used a maximum length key for the region. (GTM-8873)

*
 GT.M handles out-of-lock-space conditions more gracefully. Previously a full lock

table could result in corruption of the lock structures, leading to segmentation violations (SIG-11).
(GTM-9020)

*
 This basically reverts GTM-8680 as the performance improvements were unreliable

in circumstances reported by a customer, resulting in multiple processes occasionally holding the
same LOCK. The GDE -LOCK_SPACE segment qualifier and MUPIP SET -LOCK_SPACE qualifier
accept a maximum value of 65536 pages. In V6.3-003[A] the maximum value was 262144 pages. LKE
SHOW does not include a LOCKSPACEINFO message in its output for regions with a BG or MM

Database

FIS
Page 26, February 05, 2019 FIS

access method as it did in V6.3-003[A]; GT.M only issues this when the application exhausts the
LOCK space. (GTM-9023)

GT.M V6.3-003
FIS

February 05, 2019, Page 27

Language

* Addressed by GTM-8694 (GTM-6115)

* When GT.M encounters a line with a length greater than 8192 bytes in a source file, it emits a
%GTM-W-LSINSERTED warning. This warning identifies cases where a line greater than 8192 bytes
is split into multiple lines, which causes statements beyond the character prior to the limit to execute
irrespective of any starting IF, ELSE or FOR commands. Previously, GT.M split the lines with no
warning. (GTM-7986)

* GT.M accepts an offset without a label for an entryref argument to DO, GOTO and ZGOTO. FIS
recommends restricting the use of offsets in entryrefs to debugging, error handling and testing.
Previously GT.M required a label before any offset. (GTM-8186)

* GT.M sets $KEY to the characters terminating a READ, and NULL if terminated otherwise (e.g. FIX
format, end of file, or timeout). When it encounters an error during an I/O, GT.M sets $DEVICE to
"1," followed by an error description. Previously, GT.M did not maintain $KEY for sequential devices
and only maintained $DEVICE for certain I/O errors. (GTM-8587)

* GT.M checks the syntax of code assigned to $ETRAP, $ZSTEP, $ZTRAP, and EXCEPTION at the
time they are specified. Note that $ZTRAP and EXCEPTION are subject to gtm_ztrap_form, and, if
that specifies entryref or adaptive, GT.M does not check the syntax. Also, the environment variables
$gtm_etrap, $gtm_trigger_etrap, and $gtm_zstep provide ways of setting some of the ISVs, so their
values are verified at process initiation. Further, a SET $ETRAP uses a temporary default value of "IF
$ZJOBEXAM" when shifting from $ZTRAP to $ETRAP in case the specified value has compilation
errors. Previously GT.M detected errors in such code only for SET $ZSTEP and when attempting to
use the vector. (GTM-8769)

* $SELECT() compilation properly handles special cases where an omitted colon after a literal true
select argument produces a syntax error; a regression introduced in V6.3-001[A], caused it to produce
a GTMASSERT2 after reporting the issue. (GTM-8780)

* $NAME() of a naked reference returns any extended reference associated with the current
$REFERENCE; previously it did not. (GTM-8786)

* The compiler excludes BLKTODEEP lines from the object files; due to a regression introduced by
GTM-5178 in V6.3-002 they were not excluded (GTM-8788)

* The Update Process operates correctly when a trigger issues a NEW $ZGBLDIR while performing
updates on other unreplicated instances. A regression introduced with GTM-4759 in V63000[A]
caused such operations in the Update Process to terminate unexpectedly with a segmentation fault
(SIG-11). (GTM-8789)

* $QUERY() of a local variable produces a MAXSTRLEN error when its result exceeds the supported
string length. While GT.M supports very long key lengths for local variables, features that need to
work with the entire key, such as $NAME() and $QUERY(), may not be able to handle keys with a
length that exceeds the maximum supported string length (currently 1MiB). Rather than prohibit

#GTM-8792

Language

FIS
Page 28, February 05, 2019 FIS

longer keys entirely, GT.M just restricts such features, so, if you need the features, avoid keys that
exceed the limit. Previously $QUERY() could give a segmentation violation (SIG-11) if it encountered
an over-length key. (GTM-6115)(GTM-8792)

* The ZSHOW "T" (where "T" can be case-insensitive) produces only the summary lines for "G" and
"L" output; previously ZSHOW always showed the detail with the summary. (GTM-8804)

* GT.M reports a NUMOFLOW error for a string literal used as a number and evaluating to a number
that exceeds the supported range, as of this writing: 1E47. A compiler optimization in V6.3-001[A]
caused such an evaluation to produce a very very small negative value. (GTM-8832)

* $DEVICE returns the complete error message. Previously, $DEVICE truncated messages which were
over 80 characters. (GTM-8839)

* The read/write (non-NEWable) $ZSTRPLLIM ISV provides a way for a process to limit its process
private memory used for local variable and scratch storage. When the value is zero (0), the default,
or negative, there is no limit. A positive value specifies a byte limit. When a request for additional
memory exceeds the limit, GT.M does the expansion, and then produces an STPCRIT error. By
default, a later request for memory produces an STPOFLOW, unless, subsequent to STPCRIT,
$ZSTRPLLIM has been set to the same or higher limit. Note that GT.M allocates memory in
large blocks so the interaction of $ZSTRPLLIM with memory growth is not exact. When the
gtm_string_pool_limit environment variable specifies a positive value, GT.M uses it for the
initial value of $ZSTRPLLIM. Previously, process memory was only limited by operating system
configuration. (GTM-8847)

* The compiler appropriately handles a syntax error in the argument of a postconditional command
when the postconditional is a literal that evaluates to FALSE. Due to a regression associated with
GTM-8573 in V6.3-001[A], this combination caused an abnormal termination with a segmentation
violation (SIG-11). (GTM-8854)

* GT.M defers literal optimizations involving patterns within an XECUTE as well as evaluations
that encounter issues with the pattern table. Due to a regression associated with GTM-8573 in
V6.3-001[A], these combinations caused an abnormal termination with a segmentation violation
(SIG-11). (GTM-8856)

* Pattern code processing appropriately produces a PATMAXLEN error for certain patterns that
exceed the size GT.M supports. Previously, some patterns produced a segmentation violation
(SIG-11). This issue was only observed in the GT.M development environment, and was never
reported by a user. (GTM-8857)

* GT.M appropriately handles timeout values which have more than three decimal digits; in V6.3-002
and V6.3-003, such values inappropriately had a very long timeout. The workaround was to
avoid such values because GT.M only recognizes three digits after the decimal point for timeouts.
(GTM-8866)

*
 When using standard Boolean evaluation (no short-circuiting enabled by

$gtm_boolean or gtm_side_effects) GT.M deals appropriately with cases where the there is a side
effect and an right-hand operand interior to the expression happens to evaluate to a value that causes

Language

GTM V6.3-003
FIS

February 05, 2019, Page 29

an incorrect result. This issue appeared with the introduction of standard Boolean evaluation in
V5.5-000, and has not previously shown up in testing or been reported until a customer encountered
a case. (GTM-8880)

GTM V6.3-003
Page 30, February 05, 2019 FIS

GT.M V6.3-003
FIS

February 05, 2019, Page 31

System Administration

* MUPIP BACKUP for directory and file name lengths equal and greater than 255, issues
FILENAMETOOLONG error; previously, this produced a core. Also, backing up an Instance File to
a path longer than 255 succeeds with the correct journal sequence number; previously, this issued
an incorrect journal sequence number. In addition, MUPIP JOURNAL -RECOVER -REDIRECT
issues more information for the INVREDIRQUAL error; previously, it provided less context for the
INVREDIRQUAL error. (GTM-4212)

* The MUPIP SET command supports the following qualifiers: -N[ULL_SUBSCRIPTS]={never,
always, existing}, which controls whether GT.M accepts null subscripts for database keys. -
[NO]STD[NULLCOLL], which determines whether GT.M will use standard MUMPS collation or
GT.M collation for null-subscripted keys. Previously, this functionality was only available through
GDE for database file creation, and DSE for existing database files. FIS strongly recommends avoiding
the use of DSE when there is an alternative. (GTM-8617)

* MUPIP REPLICATE -RECEIVER -LOG_INTERVAL= and MUPIP SET -DEFER_TIME= accept values
ranging from 0 to 2**31-1, -DEFER_TIME= accepts one special value -1; otherwise they produce an
error message. MUPIP REPLICATE -RECEIVER -HELPER accepts values ranging from 1 to 128 and
otherwise produces an error message. Previously, all these operations accepted inappropriate values.
(GTM-8732)

* MUPIP SET -{FILE|REGION} recognizes the -[NO]READ_ONLY qualifier to indicate whether
GT.M should treat an MM access method segment as read only for all users, including root. This
designation augments UNIX authorizations and prevents any state updates that normally might
require an operational action for a database with no current accessing (attached) processes. The
GT.M help databases have -READ_ONLY set by default. Previously, a database such as the gtmhelp
database in the GT.M distribution typically never received a data update but nevertheless could
require a ROLLBACK, RECOVER or RUNDOWN to ensure a proper at-rest state. MUPIP emits an
error on attempts to set -READ_ONLY on databases with the BG access method, or to set the access
method to BG on databases with -READ_ONLY set. (GTM-8735)

* MUPIP SET for file or region accepts -H[ARD_SPIN_COUNT]=<integer count> and -
SPIN[_SLEEP_MASK]=<hexadecimal mask>; previously it did not support changes to the hard
spin count and required -SPIN_SLEEP_LIMIT to change the spin sleep mask. MUPIP SET no longer
supports the -SPIN_SLEEP_LIMIT qualifier.(GTM-8767)

* MUPIP FREEZE sends a DBFREEZEON/DBFREEZEOFF message to the system log for each region
whose freeze state is changed. (GTM-8779)

* MUPIP JOURNAL -EXTRACT='-stdout' appropriately handles its termination; previously, if stdout
was already closed this specification produced a segmentation violation (SIG-11). (GTM-8787)

* Copies of a database file made while a MUPIP FREEZE -ONLINE -ON is in effect can be used on
the same system by performing a MUPIP RUNDOWN -OVERRIDE and a MUPIP FREEZE -OFF on
the copy. Previously, an attempt to remove the freeze on the copy would attempt to modify the
journal files of the original database and fail. Note that this change moved the ^%PEEKBYNAME

System Administration

FIS
Page 32, February 05, 2019 FIS

item "sgmnt_data.freeze_online" to "node_local.freeze_online"; for this release (V6.3-003) only, ^
%PEEKBYNAME recognizes either designation, but going forward, it will not. If you have code
referencing this item, please revise it. (GTM-8794)

* The gtminstall script has a new command line option to skip disablingRemoveIPC=Yes in systemd
configuration files. This option was added to facilitate unattended installs and automated builds.
Previously, if noresponse was provided, the script would terminate with an error in the script. This
issue was only observed in the GT.M development environment, and was never reported by a user.

The configure script better handles the detection of 64 bit software. Previously, the script could
mistakenly identify 32bit software as 64bit software if the output of the file command contained "64"
in the sha1 binary hash. This issue was only observed in the GT.M development environment, and
was never reported by a user.

Additionally the gtminstall script defaults to i586 kit for i686 platforms. Since GT.M V6.2-001, the
GT.M release distribution kit has i586 in the name. Attempting to use gtminstall on an i686 platform
resulted in a failure to download and install the distribution kit due to this change in name. This
issue was only observed in the GT.M development environment, and was never reported by a user.
(GTM-8797)

* MUPIP ENDIANCVT converts all numeric file header fields to the opposite endian. Previously, it did
not convert the Mutex Queue Slots field. (GTM-8798)

* gtmsecshr, and facilities that interact with it use message severities that seem appropriate to
the issue. Previously, we received customer concerns that the severities were arbitrary, which
complicated understanding them. Note that, should you use message parsing that depends on
severity, you should review it for possible impact. (GTM-8840)

* When TRIGGER_MOD is restricted, attempting to ZBREAK a trigger results in a RESTRICTEDOP
error, and both ZBREAK and ZSTEP actions are ignored while executing code within a trigger.
Previously a TRIGGER_MOD restriction did not imply these other restrictions. (GTM-8842)

* The GT.M restrictions facility recognizes HALT[:<group-name>] and ZHALT[:<group-name>].
When either is present and restriction conditions are met, the restricted command produces a
RESTRICTEDOP error. In order to limit pathological looping, if A GT.M process issues a second
occurrence of the restricted command within half a second, it terminates after sending a fatal error
to both the principal device and the syslog, and also producing a GTM_FATAL* context file, but no
core file. Note that, With these restrictions in place, a process should terminate with, for example:
ZGOTO 0. with or without a restriction, executing these commands as part triggered logic on a
replicating instance may cause the Update Server to terminate and thereby stop replication. As part
of this change when ""=$ZTRAP and ""!=$ECODE, ZGOTO 0 returns a non-zero status, derived from
the error code in $ZSTATUS, to the shell. If you have an application that uses ZHALT, ZGOTO 0 and
shell scripts that check returned status, you should review things in light of this change. Note: with
appropriate error handling, an application can use one or both of these restrictions to perform clean
up after any explicit HALT or ZHALT. Previously, the restrictions facility did not support these two
restrictions, and $ZGOTO 0 always returned a success status to the shell. (GTM-8844)

* GT.M appropriately uses file paths with multiple adjacent forward slashes (/) when turning
journaling on. Previously, when turning journaling on, GT.M appended inappropriate characters

System Administration

GTM V6.3-003
FIS

February 05, 2019, Page 33

to the end of intended journal file names whose path contained adjacent forward slashes. The
workaround was to avoid specifying file paths with any adjacent forward slashes. (GTM-8846)

GTM V6.3-003
Page 34, February 05, 2019 FIS

GT.M V6.3-003
FIS

February 05, 2019, Page 35

Other

* GT.M defers interrupts during asynchronous database writes. Previously, such interrupts could very
occasionally cause a deadlock. This issue was only observed in the GT.M development environment,
and was never reported by a user. (GTM-8754)

* ZSYSTEM manages memory appropriately; a regression in V6.3-002 caused it to leak small amounts
of memory. This issue was only observed in the GT.M development environment, and was not
reported by a user. (GTM-8781)

* GT.M handles certain unusual cases of local storage (heap) utilization more efficiently. Previously,
these cases would cause poor performance as local when adding variables with such patterns.
(GTM-8799)

* The cmake build produces appropriate support for the ^%YGBLSTATS utility; in the original
V6.3-001, V6.3-001A and V6.3-002 releases, an attempt to use ^%YGBLSTATS with a cmake build
produced DLLNORTN and ZCRTENOTF errors.(GTM-8801)

* Help databases built with make files have QDBRUNDOWN and NOGVSTATS characteristics, which
match the properties of help databases of the release builds. Previously, these characteristics differed
depending on the build. (GTM-8849)

* GT.M correctly cleans up buffers which were allocated prior to a runtime error due to a missing
global directory. Previously, these buffers would accumulate if an error handler prevented GT.M
from terminating. The workaround for this was to avoid repeated attempts to use a global directory
that does not exist or to which the process does not have an authorized path. (GTM-8855)

*
 GT.M handles rare cases in timer handling correctly. Previously these cases could

result in SETITIMERFAILED errors and messages in the system log. This was only ever observed in
the GT.M development environment and has never been reported from a customer site. (GTM-8887)

*
 The ZHELP command does not report errors after the user presses a <CTRL-C>.

Previously, when exiting after a <CTRLC>, the utility reported an UNDEF error and left a GT.M help
dump file for analysis. (GTM-8889)

GTM V6.3-003
Page 36, February 05, 2019 FIS

GT.M V6.3-003
FIS

February 05, 2019, Page 37

Error and Other Messages

DBFREEZEOFF

DBFREEZEOFF, Region rrrr is UNFROZEN ([NO]OVERRIDE [NO]AUTOREL)

Operator log/MUPIP Information: The database region rrrr is no longer frozen, most likely due to a
MUPIP FREEZE -OFF, with the selected options. [NO]AUTOREL indicates whether an autorelease of the
region occurred prior to the MUPIP FREEZE -OFF command.

Action: Confirm that this was the desired action.

DBFREEZEON

DBFREEZEON, Region rrrr is FROZEN ([NO]OVERRIDE [NO]ONLINE [NO]AUTOREL)

Operator log/MUPIP Information: The database region rrrr is frozen, most likely due to a MUPIP
FREEZE -ON, with the reported options.

Action: Confirm that this was the desired action.

DBNONUMSUBS

DBNONUMSUBS, XXXX Key contains a numeric form of subscript in a global defined to collate all
subscripts as strings

Run Time/MUPIP Error: The record has a numeric subscript but the collation setting for the global or
region indicates all subscripts are filed as strings. The leading context (XXXX) identifies the block and
offest of the problematic record. This can arise if an operator uses DSE to force a change to a collation
setting or to modify a key when the global already has content.

Action: If you can determine the cause of, and reason for, the change and you may choose to reverse it.
If you need to change the collation, the appropriate procedure is to EXTRACT the data, KILL the global,
or remove and recreate the database file, and them LOAD the extracted data.

DBNULCOL

DBNULCOL, XXXX NULL collation representation differs from the database file header setting

DSE/MUPIP/Run Time Error: This indicates the database contains a record with an empty subscript
("Null" subscript) representation that is incompatible with the current setting database file header
setting for such a representation. The leading context (XXXX) specifies the block number and offset
of the problematic record. This can only arise if someone changes the setting for the database while it
contains one or more such subscripts. FIS recommends against making such a change. This message can
originate from MUPIP INTEG, DSE INTEG or from running with VIEW "GDSCERT"

Error and Other Messages GBLOFLOW

FIS
Page 38, February 05, 2019 FIS

Action: Use the record and block information to remove the problematic record with DSE and restore
the data appropriately, typically with a SET command. Note that the record and block of the record
many change due to ongoing updates, so this operation requires great care and familiarity with DSE.

GBLOFLOW

GBLOFLOW, Database segment is full

Run Time/MUPIP Error: This indicates that an error was encountered while extending the database file.

Action: Examine the accompanying message(s) for the cause of the error. If the error is due to
insufficient authorization, address that. If the error is due to TOTALBLKMAX (refer to the explaination
of that message) or a lack of enough free space on the disk to fit the size of a database file, try
performing a KILL of some nodes in the database to get free blocks in the existing allocated space (you
may need to KILL several subscripted nodes before you can KILL a name node).

LSINSERTED

LSINSERTED, Line YYYY, source module XXXX exceeds maximum source line length; line seperator
inserted, terminating scope of any prior IF, ELSE, or FOR

Compile Time Warning: Indicates that source XXXX line YYYY exceeded the maximum line length
and GT.M separated it into multiple lines to allow continued parsing. Internally, GT.M represents the
generated code as N lines for this source line, where N is the number of segments extracted from this
source line. Be aware that as a result of this, source lines containing a command whose scope is rest of
the line (IF, ELSE, FOR), are now split into multiple lines, each with a separate scope.

Action: Consider refactoring code to avoid source line lengths in excess of 8192 characters.

MUTEXFRCDTERM

MUTEXFRCDTERM, Mutual Exclusion subsystem detected forced termination of process pppp. Crit
salvaged from database file dddd.

Run Time Warning: This indicates that GT.M confirmed inappropriate termination of the process pppp,
while holding crit on database file dddd.

Action: Determine the cause of the termination and take appropriate action.

NULSUBSC

NULSUBSC, XXXX Null subscripts are not allowed for current region

Run Time/MUPIP Error: This indicates that a global variable specified a null subscript in a database file
which does not accept null subscripts. The leading context (XXXX) specifies more about the event or
location of the issue

READONLYNOBG Error and Other Messages

GTM V6.3-003
FIS

February 05, 2019, Page 39

Action: Look for the source of the null subscript(s) and consider whether they are appropriate or due
to a coding error. If they are appropriate, use MUPIP SET -NULL_SUBSCRIPTS, and remember to make
the same adjustment with GDE CHANGE REGION -NULL_SUBSCRIPTS to ensure the next time you
recreate a database that the characteristic persists.

READONLYNOBG

READONLYNOBG, Read-only cannot be enabled on non-MM databases

MUPIP Error: This indicates an attempt to change a BG database to -READ_ONLY or to change a -
READ_ONLY to MM access method; -READ_ONLY only compatible with the MM access mode.

Action: Verify whether the database should not be read only and adjust, if appropriate. Alternatively,
set the database to MM access mode then mark it as read-only.

REPLINSTACC

REPLINSTACC, Error accessing replication instance file xxxx

Run Time/MUPIP Error: This indicates that some errors were encountered while accessing the specified
replication instance file defined by $gtm_repl_instance or the relevant global directory.

Action: Refer to the accompanying message(s) for additional information.

REPLINSTMISMTCH

REPLINSTMISMTCH, Process has replication instance file ffff (jnlpool shmid = ssss) open but
database dddd is bound to instance file gggg (jnlpool shmid =tttt)

Run Time Error: The process attempted an update on the replicated database dddd associated with the
replication instance file ffff and journal pool shared memory id ssss; however, the process has already
associated the database with a different replication instance file gggg or journal pool shmid tttt.

Action: A replicated database can only accept updates by processes that have the same replication
instance file (defined by the environment variable gtm_repl_instance or in the global directory) open
for that database. Ensure the same replication instance file is used for all processes that update the same
replicated database file. This error can also occur if the replication instance file was recreated (while
processes were still accessing the replication instance). In this case, the name ffff and gggg would be the
same but the corresponding journal pool shared memory ids would be different. To recover from this
situation, shut down all processes accessing the instance from before and after the instance file recreate.
Run an argumentless MUPIP RUNDOWN to clean up the older journal pool tttt and restart the instance.
The Source Server (which is the first process to start on a replicated instance) only binds replicated
databases from its global directory to the journal pool that it creates. No other replicated database file
can be bound with this journal pool.

Error and Other Messages REPLMULTINSTUPDATE

FIS
Page 40, February 05, 2019 FIS

REPLMULTINSTUPDATE

REPLMULTINSTUPDATE, Previous updates in the current transaction are to xxxx so updates to
yyyy (in rrrr) not allowed

Run Time Error: Previous updates in the current TP transaction mapped to database files associated
with replication instance file xxxx, so it cannot make updates to database file yyyy which is associated
with replication instance file rrrr.

Action: Modify the application so all updates in a TP transaction to replicated regions are associated
with a single replication instance.

STACKCRIT

STACKCRIT, Stack space critical

Run Time Error: This indicates that the process has consumed almost all of the available stack space.

Action: Look for infinite recursion. If you do not take immediate action to reduce your stack, GT.M
is likely to produce a STACKOFLOW error, which terminates the process. Examine the stack with
ZSHOW. Trim the stack using QUIT, ZGOTO, HALT or ZHALT.

STACKOFLOW

STACKOFLOW, Stack overflow

Run Time Fatal: This indicates that the process required more stack space than was available in
memory.

Action: Reduce the stack when you get a STACKCRIT error. This error terminates the process.

STPCRIT

STPCRIT, String pool space critical

Run Time Error: This indicates that the process has exceeded the heap (string pool) limit specified in
the $ZSTRPLLIM ISV. If you do not take prompt action to reduce the process memory requirements, at
the next heap expansion, GTM produces an STPOFLOW error, which terminates the process.

Action: Investigate whether the process memory usage is appropriate, and if so, increase or remove
the limit. Otherwise correct the cause(s) of the excessive memory consumption. Please see the
documentation for $ZSTRPLLIM for additional information.

STPOFLOW

STPOFLOW, String pool space overflow

STPOFLOW Error and Other Messages

GTM V6.3-003
FIS

February 05, 2019, Page 41

Run Time Fatal: This indicates that the process has previously exceeded the heap (string pool) limit
specified in the $ZSTRPLLIM ISV and still needs more memory, so GTM terminates the process.

Action: Investigate whether the process memory usage is appropriate, and if so, increase or remove
the limit. Otherwise correct the cause(s) of the excessive memory consumption. Please see the
documentation for $ZSTRPLLIM for additional information.

GTM V6.3-003
Page 42, February 05, 2019 FIS

	
	Table of Contents
	V6.3-003A
	Overview
	Conventions
	Platforms
	Platform support lifecycle

	32- vs. 64-bit platforms
	Call-ins and External Calls
	Internationalization (Collation)
	Environment Translation

	Additional Installation Instructions
	
	Recompile
	Rebuild Shared Libraries or Images
	Compiling the Reference Implementation Plugin

	Upgrading to GT.M V6.3-003A
	Stage 1: Global Directory Upgrade
	Stage 2: Database Files Upgrade
	Database Compatibility Notes

	Stage 3: Replication Instance File Upgrade
	Stage 4: Journal Files Upgrade
	Stage 5: Trigger Definitions Upgrade
	Downgrading to V5 or V4

	Managing M mode and UTF-8 mode
	Setting the environment variable TERM
	Installing Compression Libraries

	
	V6.3-003B
	V6.3-003A
	V6.3-003

	Database
	Language
	System Administration
	Other
	Error and Other Messages
	DBFREEZEOFF
	DBFREEZEON
	DBNONUMSUBS
	DBNULCOL
	GBLOFLOW
	LSINSERTED
	MUTEXFRCDTERM
	NULSUBSC
	READONLYNOBG
	REPLINSTACC
	REPLINSTMISMTCH
	REPLMULTINSTUPDATE
	STACKCRIT
	STACKOFLOW
	STPCRIT
	STPOFLOW

