GT.M

Release Notes
V6.3-001

Empowering r:I S
the Financial World

Contact Information

GT.M Group

Fidelity National Information Services, Inc. GT.M Support for customers: gtmsupport@fisglobal.com
200 Campus Drive Automated attendant for 24 hour support: +1 (484) 302-3248
Collegeville, PA 19426 Switchboard: +1 (484) 302-3160

United States of America Website: http://fis-gtm.com

Legal Notice
Copyright ©2017, 2019-2020 Fidelity National Information Services, Inc. and/or its subsidiaries. All Rights Reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts.

GT.M™ s a trademark of Fidelity National Information Services, Inc. Other trademarks are the property of their respective owners.

This document contains a description of GT.M and the operating instructions pertaining to the various functions that comprise the system. This document
does not contain any commitment of FIS. FIS believes the information in this publication is accurate as of its publication date; such information is subject
to change without notice. FIS is not responsible for any errors or defects.

Revision History

Revision 1.4 11 March 2020 Add GTM-8547.

Revision 1.3 5 February 2019 Updated the Platforms section to add AIX 7.1 TL
4 and AlIX 7.2 as supported versions; Correct the
maximum V6 database size.

Revision 1.2 25 September 2017 Correct the description of GTM-8362 and add
GTM-8632.
Revision 1.1 06 April 2017 V6.3-001A

Revision 1.0 15 March 2017 V6.3-001 - First published version

http://fis-gtm.com
http://www.gnu.org/licenses/fdl.txt

Table of Contents

V0. 300 T A o s 1
(017 4 1) TP PPPRPRPRY 1

(070} 1N 773 o 15 (o) s I PPt 1

Pt OIS ..o 3
Platform support HEECYCLEcoouiii i ettt 5

32- VS. 64-DIt PIALEOTINS ..ottt ittt 5
Call-ins and External Calls ..o e 5
Internationalization (COILAtION)iuiuiii et e e e e e e et e et e e e e e e 6
Environment Translationooiiiiiii e e e e 6

RECOIMPILE ..ttt ettt ettt 6

Rebuild Shared Libraries 0r IIMAZEScc.uueiiuniiiiieiii ettt et ettt et e e et e e et e e 6

Additional Installation INSTIUCHIOMSuiiiiii i e e e e et 6
... 6

Upgrading to GT.M VE.3-001A ... ittt et e et et e e et e e 7
Stage 1: Global DIrectory UPGIAdeco.uiiiiiiiiiiiii e ettt ea e 8
Stage 2: Database Files UPGIadeco..iiiiiiiiiiiiiii e ettt 8
Stage 3: Replication Instance File UPGradecoo.oiiiiiiiiiiiiiiiii et 10
Stage 4: Journal Files UPGradecoouiiiiiiiiiiiiii e et 10
Stage 5: Trigger Definitions UPGIadeccoouiiiiiiiiiiiii it 11
Downgrading to V5 OF V4 oot ettt 11

Managing M mode and UTF-8 MOGEccouuiiiiiiiiiiiiii e ettt et 12

Setting the environment variable TERMcooiiiiiiiiiitiii e e ettt e e 13
Installing CompPression LIDIATIESuiiiuniiiiiiii ittt ettt et ettt et e e e e e 13
CRANEE HISEOTT ..niiitiii ettt et et et ettt ettt et ettt ettt ea e 15
RV T 1[0 S N OO 15
V63500 .o e e 15
| DY 2 o 1 PP PP PP 20
LanUAGE ..o e 22
System AdMINISITATION uiiii i ettt et ettt eaas 25
(015 1<) OO PR PTPTPNN 28
IMOTE TFOTTIIALION ..ttt ittt e e e e e e e e et e et e e e et e e e et e e e e e et e e e e e e et e e e et et et e a e e aas 30
Additional information for GTM-6838 - Asynchronous database IOcocoiiiiiiiiiiiiiiiii e 30
Additional information for GTM-6699 - Monitoring of shared database statiStiCscccocoiiiiiiiiiiiiniiiniiiiii e 31
Error and OTher MESSAZESceuuutiiieiii ettt et et ettt e e ettt et et et e eaa s 35
CHANGELOGINTERVAL & ..ot 35
CRYPTNOMM B oot e et et ettt et ettt ettt ettt et ettt et et e e eneas 35
DBDUPNULCOL € ..ottt e ettt e et e et e ettt ettt 35
DBMISALIGN N ettt e ettt ettt ettt h ettt 35
DBNULCOL) oottt ettt ettt et h ettt h 2o h etk s et et ettt e etttk 35
DB TOTBLEK A o oottt 36
GDECRY P TN OMM A e 36
GDINVALID A ettt ettt ettt h et ettt ettt h ettt ettt ettt 36
INV AD D RSP E C A 36
INVLINKTMPDIR B ittt ettt ettt ettt ettt ettt ettt ettt 36
INVMEMRESRY A ettt ettt h e ettt ettt ettt 36
1(0)210) s TSRS PSRRI 37
JOBLVN ZLONG A 37
JOBLV N D E T AL A e 37
MUPINLINTERRUP T A e 37
NOPRINCIO A e 38

il

NOTALLINLEN B ittt ettt ettt e et e et e et e e e st e et e et e et e e et e e et e e et e e e e 38

NOT ALLREPLON A e 38
OFRZACTIVE G oo, 38
OFRZAUTOREL 0 oo e 38
OFRZCRITREL & oo 39
OFRZCRITSTUCK &2 .o e 39
OFRZNOTHELD &2 ..o e 39
RECL O AD A 39
REPLLOGOPN A e 39
REPLS T AT E O A e 39
REQROLLBACK A e 40
RESRCINT RLCKBY PAS A e, 40
RES R CW AL A e 40
TP RES T AR A e 40
TRIGINV CHSE T A e 41
ZATRANSERR O i 41

iv

V6.3-001A

Overview

GT.M V6.3-001A provides timely remediation for a flaw introduced with GTM-8637 in V6.3-001. This flaw was discovered during GT.M
testing immediately after the release and was never reported by a user. V6.3-001A also includes bug fixes and one enhancement and is
suitable for production use. For more information, refer to Change History - V6.3-001A.

V6.3-001 brings important and useful enhancements to GT.M.

GT.M provides a fast and efficient mechanism for processes to opt-in to share their database access statistics for other processes to monitor.
The statistics are the same as those available to the process itself using the ZSHOW "G" command. With almost no impact on monitored
processes, a monitoring process can rapidly identify, for example, which processes are performing the most global SETs, or which ones are
encountering the most database access conflicts (GTM-6699).

MUPIP FREEZE -ONLINE freezes database writes from global buffers to the file system, while allowing applications to continue database
updates as long as they are able to, without requiring a write to the database file system. During this time, journal writes continue, ensuring
database recoverability. A typical use is to freeze a file system to take a snapshot, or break a mirror, an operation which can take seconds to
over a minute. MUPIP FREEZE without the -ONLINE enhancement freezes database updates by application processes (GTM-8362).

V6.3-001 includes multiple optimizations for performance, some applicable to all platforms, and others specific to Linux on x86_64.

Introduced as field test grade functionality in a production release, asynchronous IO is an option for databases using the BG access

method. Unlike traditional database 10, which performs synchronous IO through the file system cache, asynchronous IO bypasses the file
system cache. The performance characteristics of asynchronous IO are likely to be quite different from traditional sequential 10. Although
asynchronous IO in theory should be more efficient than synchronous IO by eliminating the need for the UNIX file buffer cache and thereby
eliminating certain file system locks (e.g., file systems mounted with AIX's CIO mount option, in practice asynchronous IO is likely to
emerge from the starting gate under-performing synchronous IO because of the years that synchronous IO has been the common IO model
operating systems and file systems have had used by applications. Please anticipate extensive benchmarking and tuning for your application
to achieve the best performance it can with asynchronous IO. (GTM-6838).

GT.M accepts routines with <CR><LF> line terminators. FIS thanks the participants of the 2016 "Hacking GT.M" workshop for this
enhancement (GTM-4283).

As always, the release bring numerous smaller enhancements, and fixes. See the Change History below.

Please note that messages are not part of the GT.M API whose stability we strive to maintain. The enhancements and fixes in this release bring
more changes to messages, including in some cases the order of messages, than a typical GT.M release does. Make sure that you review any
automated scripting that parses GT.M messages.

Conventions

This document uses the following conventions:

Flag/Qualifiers -
Program Names or Functions upper case. For example, MUPIP BACKUP
Examples lower case. For example:
mupip backup -database ACN,HIST /backup
Reference Number A reference number is used to track software
enhancements and support requests.
It is enclosed between parentheses ().

Platform Identifier

V6.3-001A

Where an item affects only specific platforms, the platforms are

listed in square brackets, e.g., [AIX]

Note

The term UNIX refers to the general sense of all platforms on which GT.M uses a POSIX API. As of this date, this

includes: AIX and GNU/Linux on x86 (32- and 64-bits).

The following table summarizes the new and revised replication terminology and qualifiers.

Pre V5.5-000 terminology

Pre V5.5-000 qualifier

Current terminology

Current qualifiers

originating instance or primary
instance

-rootprimary

originating instance or originating
primary instance.

Within the context of a replication
connection between two instances,

an originating instance is referred to
as source instance or source side. For
example, in an B<-A->C replication
configuration, A is the source instance
for B and C.

-updok (recommended)

-rootprimary (still
accepted)

replicating instance (or secondary
instance) and propagating instance

N/A for replicating
instance or secondary
instance.

-propagateprimary for
propagating instance

replicating instance.

Within the context of a replication
connection between two instances,

a replicating instance that receives
updates from a source instance is
referred to as receiving instance or
receiver side. For example, in an B<-
A->C replication configuration, both B
and C can be referred to as a receiving
instance.

-updnotok

N/A

N/A

supplementary instance.

For example, in an A->P->Q replication
configuration, P is the supplementary
instance. Both A and P are originating
instances.

-updok

Effective V6.0-000, GT.M documentation adopted IEC standard Prefixes for binary multiples. This document therefore uses prefixes Ki, Mi
and Ti (e.g., IMiB for 1,048,576 bytes). Over time, we'll update all GT.M documentation to this standard.

& denotes a new feature that requires updating the manuals.

& denotes a new feature or an enhancement that may not be upward compatible and may affect an existing application.

@ denotes deprecated messages.
A denotes revised messages.

© denotes added messages.

http://physics.nist.gov/cuu/Units/binary.html

V6.3-001A

Platforms

Over time, computing platforms evolve. Vendors obsolete hardware architectures. New versions of operating systems replace old ones. We
at FIS continually evaluate platforms and versions of platforms that should be Supported for GT.M. In the table below, we document not
only the ones that are currently Supported for this release, but also alert you to our future plans given the evolution of computing platforms.
If you are an FIS customer, and these plans would cause you hardship, please contact your FIS account executive promptly to discuss your
needs.

Each GT.M release is extensively tested by FIS on a set of specific versions of operating systems on specific hardware architectures

(the combination of operating system and hardware architecture is referred to as a platform). This set of specific versions is considered
Supported. There may be other versions of the same operating systems on which a GT.M release may not have been tested, but on which
the FIS GT.M Group knows of no reason why GT.M would not work. This larger set of versions is considered Supportable. There is an even
larger set of platforms on which GT.M may well run satisfactorily, but where the FIS GT.M team lacks the knowledge to determine whether
GT.M is Supportable. These are considered Unsupported. Contact FIS GT.M Support with inquiries about your preferred platform.

As of the publication date, FIS supports this release on the hardware and operating system versions below. Contact FIS for a current list of
Supported platforms. The reference implementation of the encryption plugin has its own additional requirements, should you opt to use it as
included with GT.M.

Platform Supported Notes
Versions
IBM Power Systems AIX 6.1,7.1 TL 4,7.2 | Only 64-bit versions of AIX with POWER6 as the minimum required CPU

architecture level are Supported.

While GT.M supports both UTF-8 mode and M mode on this platform, there
are problems with the AIX ICU utilities that prevent FIS from testing 4-byte
UTF-8 characters as comprehensively on this platform as we do on others.

Running GT.M on AIX 7.1 requires APAR 1787564, a fix for the POW()
function, to be applied. To verify that this fix has been installed, execute
instfix -ik IZ87564.

AIX 7.1 TL 5 is Supportable.

Only the AIX jfs2 filesystem is Supported. Other filesystems, such as jfs1
are Supportable, but not Supported. FIS strongly recommends use of the jfs2
filesystem on AIX; use jfs1 only for existing databases not yet migrated to a
jfs2 filesystem.

Effective May 1, 2017, FIS intends to require 7.1 as the minimum level of AIX,
and POWER?7 as the minimum required CPU architecture level.

x86_64 GNU/Linux Red Hat To run 64-bit GT.M processes requires both a 64-bit kernel as well as 64-bit
Enterprise Linux | hardware.

6 and 7; Ubuntu
14.04 LTS and GT.M should also run on recent releases of other major Linux distributions

16.04 LTS with a contemporary Linux kernel (2.6.32 or later), glibc (version 2.12 or later)
and ncurses (version 5.7 or later).

To install GT.M with Unicode (UTF-8) support on RHEL 6, in response to
the installation question Should an ICU version other than the default
be used? (y or n) please respond y and then specify the ICU version (for
example, respond 4.2) to the subsequent prompt Enter ICU version (ICU
version 3.6 or later required. Enter as major-ver.minor-ver):

V6.3-001A

Platform

Supported
Versions

Notes

GT.M requires the libtinfo library. If it is not already installed on your system,
and is available using the package manager, install it using the package
manager. If a libtinfo package is not available:

* Find the directory where libncurses.so is installed on your system.

* Change to that directory and make a symbolic link to libncurses.so.<ver>
from libtinfo.so.<ver>. Note that some of the libncurses.so entries may
themselves be symbolic links, for example, libncurses.so.5 may itself be a
symbolic link to libncurses.so.5.9.

To support the optional WRITE /TLS fifth argument (the ability to provide /
override options in the tlsid section of the encryption configuration file), the
reference implementation of the encryption plugin requires libconfig 1.4.x. As
this is a higher level than that distributed with Red Hat Enterprise Linux 6, in
order to use this feature of WRITE/TLS on that platform with the reference
implementation, please install libconfig 1.4.x, including the header files, and
recompile the reference implementation of the encryption plugin.

Although GT.M itself does not require libelf, the geteuid program used by the
GT.M installation script requires libelf (packaged as libelf1 on current Debian/
Ubuntu distributions and elfutils-libelf on RHEL 6 & 7).

A bug in the Linux 3.13 kernels used in Ubuntu 14.04 LTS (https://
bugs.launchpad.net/ubuntu/+source/linux/+bug/1502168) affects GT.M
operation. As newer kernels do not exhibit this misbehavior, FIS recommends
that you follow the Ubuntu LTS Enablement Stack procedure (https://
wiki.ubuntu.com/Kernel/LTSEnablementStack) and use newer kernels to
avoid the behavior until such time as the bug is fixed in the 3.13 kernels.

Only the ext4 and xfs filesystems are Supported. Other filesystems

are Supportable, but not Supported. Furthermore, if you use the
NODEFER_ALLOCATE feature, FIS strongly recommends that you use xfs. If
you must use NODEFER_ALLOCATE with ext4, you must ensure that your
kernel includes commit d2dc317d564a46dfc683978a2e5a4f91434e9711 (search
for d2dc317d564a46dfc683978a2e5a4f91434e9711 at https://www.kernel.org/
pub/linux/kernel/v4.x/ChangeLog-4.0.3) is in your kernel. The Red Hat
Bugzilla identifier for the bug is 1213487. With NODEFER_ALLOCATE, do not
use any filesystem other than ext4 and a kernel with the fix, or xfs.

Effective July 1, 2017, FIS intends to require:

*

the then current level of 7 (e.g, 7.3) as the minimum supported level of Red
Hat Enterprise Linux; and

*

16.04 LTS, as the minimum supported level of Ubuntu Linux.

If these will cause you hardship, please contact your FIS account manager or
your GT.M support channel.

x86 GNU/Linux

Red Hat
Enterprise Linux
6

This 32-bit version of GT.M runs on either 32- or 64-bit x86 platforms; we
expect the x86_64 GNU/Linux version of GT.M to be preferable on 64-bit
hardware. Running a 32-bit GT.M on a 64-bit GNU/Linux requires 32-bit

https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1502168
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1502168
https://wiki.ubuntu.com/Kernel/LTSEnablementStack
https://wiki.ubuntu.com/Kernel/LTSEnablementStack
https://www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3
https://www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3

V6.3-001A

Platform Supported Notes

Versions

libraries to be installed. The CPU must have an instruction set equivalent to
586 (Pentium) or better.

Effective July 1, 2017, FIS intends to consider only Debian 8 (Jessie), or the
then Debian Stable, as the sole Supported platform for the 32-bit version.

Please also refer to the notes above on x86_64 GNU/Linux.

Platform support lifecycle

FIS usually supports new operating system versions six months or so after stable releases are available and we usually support each version
for a two year window. GT.M releases are also normally supported for two years after release. While FIS will attempt to provide support to
customers in good standing for any GT.M release and operating system version, our ability to provide support diminishes after the two year
window.

GT.M cannot be patched, and bugs are only fixed in new releases of software.

32- vs. 64-bit platforms

The same application code runs on both 32-bit and 64-bit platforms; however there are operational differences between them (for example,
auto-relink and the ability to use GT.M object code from shared libraries exist only on 64-bit platforms). Please note that:

* You must compile the application code separately for each platform. Even though the M source code is the same, the generated object
modules are different - the object code differs between x86 and x86_64.

Parameter-types that interface GT.M with non-M code using C calling conventions must match the data-types on their target platforms.
Mostly, these parameters are for call-ins, external calls, internationalization (collation) and environment translation, and are listed in
the tables below. Note that most addresses on 64-bit platforms are 8 bytes long and require 8 byte alignment in structures whereas all
addresses on 32-bit platforms are 4 bytes long and require 4-byte alignment in structures.

Call-ins and External Calls

Parameter type 32-Bit 64-bit Remarks
gtm_long_t 4-byte (32- 8-byte (64- gtm_long_t is much the same as the C language long type.
bit) bit)
gtm_ulong_t 4-byte 8-byte gtm_ulong_t is much the same as the C language unsigned long type.
gtm_int_t 4-byte 4-byte gtm_int_t has 32-bit length on all platforms.
gtm_uint_t 4-byte 4-byte gtm_uint_t has 32-bit length on all platforms

A

Caution

If your interface uses gtm_long_t or gtm_ulong_t types but your interface code uses int or signed int types, failure to
revise the types so they match on a 64-bit platform will cause the code to fail in unpleasant, potentially dangerous, and
hard to diagnose ways.

V6.3-001A

Internationalization (Collation)

Parameter type 32-Bit 64-bit Remarks

gtm_descriptor in 4-byte 8-byte Although it is only the address within these types that changes, the

gtm_descript.h structures may grow by up to 8 bytes as a result of compiler padding to
meet platform alignment requirements.

é Important

Assuming other aspects of code are 64-bit capable, collation routines should require only recompilation.

Environment Translation

Parameter type 32-Bit 64-bit Remarks

gtm_string_t type in 4-byte 8-byte Although it is only the address within these types that changes, the

gtmxc_types.h structures may grow by up to 8 bytes as a result of compiler padding to
meet platform alignment requirements.

ﬁ Important

Assuming other aspects of code are 64-bit capable, environment translation routines should require only recompilation.

Recompile

* Recompile all M and C source files.

Rebuild Shared Libraries or Images

* Rebuild all Shared Libraries after recompiling all M and C source files.

If your application is not using object code shared using GT.M's auto-relink functionality, please consider using it.

Additional Installation Instructions

To install GT.M, see the "Installing GT.M" section in the GT.M Administration and Operations Guide. For minimal down time, upgrade a
current replicating instance and restart replication. Once that replicating instance is current, switch it to become the originating instance.
Upgrade the prior originating instance to become a replicating instance, and perform a switchover when you want it to resume an
originating primary role.

n Caution

Never replace the binary image on disk of any executable file while it is in use by an active process. It may lead to
unpredictable results. Depending on the operating system, these results include but are not limited to denial of service
(that is, system lockup) and damage to files that these processes have open (that is, database structural damage).

* FIS strongly recommends installing each version of GT.M in a separate (new) directory, rather than overwriting a previously installed
version. If you have a legitimate need to overwrite an existing GT.M installation with a new version, you must first shut down all

V6.3-001A

processes using the old version. FIS suggests installing GT.M V6.3-001A in a Filesystem Hierarchy Standard compliant location such as /
usr/lib/fis-gtm/V6.3-001A_arch (for example, /usr/lib/fis-gtm/V6.3-001A_x86 on 32-bit Linux systems). A location such as /opt/fis-gtm/
V6.3-001A_arch would also be appropriate. Note that the arch suffix is especially important if you plan to install 32- and 64-bit versions
of the same release of GT.M on the same system.

Use the appropriate MUPIP RUNDOWN command (e.g. ROLLBACK, RECOVER, RUNDOWN) of the old GT.M version to ensure all
database files are cleanly closed.

Make sure gtmsecshr is not running. If gtmsecshr is running, first stop all GT.M processes including the DSE, LKE and MUPIP utilities and
then perform a MUPIP STOP pid_of gtmsecshr.

Starting with V6.2-000, GT.M no longer supports the use of the deprecated $gtm_dbkeys and the master key file it points to for database

encryption. To convert master files to the libconfig format, please click u to download the CONVDBKEYS.m program and follow
instructions in the comments near the top of the program file. You can also download CONVDBKEYS.m from http://tinco.pair.com/
bhaskar/gtm/doc/articles/downloadables/CONVDBKEYS.m. If you are using $gtm_dbkeys for database encryption, please convert

master key files to libconfig format immediately after upgrading to V6.2-000. Also, modify your environment scripts to include the use of
gtmerypt_config environment variable.

Compiling the Reference Implementation Plugin

If you plan to use database encryption and TLS replication, you must compile the reference implementation plugin to match the shared
library dependencies unique to your platform. The instructions for compiling the Reference Implementation plugin are as follows:

1.

Install the development headers and libraries for libgerypt, libgpgme, libconfig, and libssl. On Linux, the package names of development
libraries usually have a suffix such as -dev or -devel and are available through the package manager. For example, on Ubuntu_x86_64 a
command like the following installs the required development libraries:

sudo apt-get install libgcryptli-dev libgpgmell-dev libconfig-dev libssl-dev
Note that the package names may vary by distribution / version.

Unpack $gtm_dist/plugin/gtmcrypt/source.tar to a temporary directory.

mkdir /tmp/plugin-build

cd /tmp/plugin-build

cp $gtm_dist/plugin/gtmcrypt/source.tar .

tar -xvf source.tar

Follow the instructions in the README.

* Open Makefile with your editor; review and edit the common header (IFLAGS) and library paths (LIBFLAGS) in the Makefile to reflect
those on your system.

* Define the gtm_dist environment variable to point to the absolute path for the directory where you have GT.M installed

* Copy and paste the commands from the README to compile and install the encryption plugin with the permissions defined at install
time

Upgrading to GT.M V6.3-001A

The GT.M database consists of four types of components- database files, journal files, global directories, and replication instance files. The
format of some database components differs for 32-bit and 64-bit GT.M releases for the x86 GNU/Linux platform.

GT.M upgrade procedure for V6.3-001A consists of 5 stages:

*

Stage 1: Global Directory Upgrade

http://tinco.pair.com/bhaskar/gtm/doc/articles/downloadables/CONVDBKEYS.m

V6.3-001A
* Stage 2: Database Files Upgrade
Stage 3: Replication Instance File Upgrade
* Stage 4: Journal Files Upgrade
Stage 5: Trigger Definitions Upgrade

Read the upgrade instructions of each stage carefully. Your upgrade procedure for GT.M V6.3-001A depends on your GT.M upgrade history
and your current version.

Stage 1: Global Directory Upgrade

FIS strongly recommends you back up your Global Directory file before upgrading. There is no one-step method for downgrading a Global
Directory file to an older format.

To upgrade from any previous version of GT.M:

* Open your Global Directory with the GDE utility program of GT.M V6.3-001A.

* Execute the EXIT command. This command automatically upgrades the Global Directory.
To switch between 32- and 64-bit global directories on the x86 GNU/Linux platform:
1. Open your Global Directory with the GDE utility program on the 32-bit platform.

2. On GT.M versions that support SHOW -COMMAND, execute SHOW -COMMAND -FILE=file-name. This command stores the current
Global Directory settings in the specified file. .

3. On GT.M versions that do not support GDE SHOW -COMMAND, execute the SHOW -ALL command. Use the information from the
output to create an appropriate command file or use it as a guide to manually enter commands in GDE.

4. Open GDE on the 64-bit platform. If you have a command file from 2. or 3., execute @file-name and then run the EXIT command.
These commands automatically create the Global Directory. Otherwise use the GDE output from the old Global Directory and apply the
settings in the new environment.

An analogous procedure applies in the reverse direction.

If you inadvertently open a Global Directory of an old format with no intention of upgrading it, execute the QUIT command rather than the
EXIT command.

If you inadvertently upgrade a global directory, perform the following steps to downgrade to an old GT.M release:
* Open the global directory with the GDE utility program of V6.3-001A.

* Execute the SHOW -COMMAND -FILE=file-name command. This command stores the current Global Directory settings in the file-name
command file. If the old version is significantly out of date, edit the command file to remove the commands that do not apply to the old
format. Alternatively, you can use the output from SHOW -ALL or SHOW -COMMAND as a guide to manually enter equivalent GDE
commands for the old version.

Stage 2: Database Files Upgrade
To upgrade from GT.M V5.0*/V5.1%*/V5.2*/V5.3*/V5.4*/V5.5:

A V6 database file is a superset of a V5 database file and has potentially longer keys and records. Therefore, upgrading a database file
requires no explicit procedure. After upgrading the Global Directory, opening a V5 database with a V6 process automatically upgrades fields
in the database fileheader.

A database created with V6 supports up to 992Mi blocks and is not backward compatible. V6 databases that take advantage of V6 limits on
key size and records size cannot be downgraded. Use MUPIP DOWNGRADE -VERSION=V5 to downgrade a V6 database back to V5 format

V6.3-001A

provided it meets the database downgrade requirements. For more information on downgrading a database, refer to Downgrading to V5 or
V4.

ﬁ Important

A V5 database that has been automatically upgraded to V6 can perform all GT.M V6.3-001A operations. However,
that database can only grow to the maximum size of the version in which it was originally created. A database created
on V5.0-000 through V5.3-003 has maximum size of 128Mi blocks. A database created on V5.4-000 through V5.5-000
has a maximum size of 224Mi blocks. A database file created with V6.0-000 (or above) can grow up to a maximum of
992Mi blocks. This means that, for example, the maximum size of a V6 database file having 8KiB block size is 7936GiB
(8KiB*992Mi).

é Important

In order to perform a database downgrade you must perform a MUPIP INTEG -NOONLINE. If the duration of the
MUPIP INTEG exceeds the time allotted for an upgrade you should rely on a rolling upgrade scheme using replication.

If your database has any previously used but free blocks from an earlier upgrade cycle (V4 to V5), you may need to execute the MUPIP
REORG -UPGRADE command. If you have already executed the MUPIP REORG -UPGRADE command in a version prior to V5.3-003 and if
subsequent versions cannot determine whether MUPIP REORG -UPGRADE performed all required actions, it sends warnings to the syslog
requesting another run of MUPIP REORG -UPGRADE. In that case, perform any one of the following steps:

* Execute the MUPIP REORG -UPGRADE command again, or

* Execute the DSE CHANGE -FILEHEADER -FULLY UPGRADED=1 command to stop the warnings.

n Caution

Do not run the DSE CHANGE -FILEHEADER -FULLY_UPGRADED=1 command unless you are absolutely sure
of having previously run a MUPIP REORG -UPGRADE from V5.3-003 or later. An inappropriate DSE CHANGE -
FILEHEADE -FULLY_UPGRADED=1 may lead to database integrity issues.

You do not need to run MUPIP REORG -UPGRADE on:

* A database that was created by a V5 MUPIP CREATE

* A database that has been completely processed by a MUPIP REORG -UPGRADE from V5.3-003 or later.
For additional upgrade considerations, refer to Database Compatibility Notes.

To upgrade from a GT.M version prior to V5.000:

You need to upgrade your database files only when there is a block format upgrade from V4 to V5. However, some versions, for example,
database files which have been initially been created with V4 (and subsequently upgraded to a V5 format) may additionally need a MUPIP
REORG -UPGRADE operation to upgrade previously used but free blocks that may have been missed by earlier upgrade tools.

* Upgrade your database files using in-place or traditional database upgrade procedure depending on your situation. For more information
on in-place/traditional database upgrade, see Database Migration Technical Bulletin.

* Run the MUPIP REORG -UPGRADE command. This command upgrades all V4 blocks to V5 format.
Note

Databases created with GT.M releases prior to V5.0-000 and upgraded to a V5 format retain the maximum size limit of
64Mi (67,108,864) blocks.

http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_Database_Migration.html

V6.3-001A

Database Compatibility Notes
* Changes to the database file header may occur in any release. GT.M automatically upgrades database file headers as needed. Any changes
to database file headers are upward and downward compatible within a major database release number, that is, although processes from
only one GT.M release can access a database file at any given time, processes running different GT.M releases with the same major release
number can access a database file at different times.

* Databases created with V5.3-004 through V5.5-000 can grow to a maximum size of 224Mi (234,881,024) blocks. This means, for example,
that with an 8KiB block size, the maximum database file size is 1,792GiB; this is effectively the size of a single global variable that has
a region to itself and does not itself span regions; a database consists of any number of global variables. A database created with GT.M
versions V5.0-000 through V5.3-003 can be upgraded with MUPIP UPGRADE to increase the limit on database file size from 128Mi to
224Mi blocks.

* Databases created with V5.0-000 through V5.3-003 have a maximum size of 128Mi (134, 217,728) blocks. GT.M versions V5.0-000 through
V5.3-003 can access databases created with V5.3-004 and later as long as they remain within a 128Mi block limit.

* Database created with V6.0-000 or above have a maximum size of 1,040,187,392(992Mi) blocks.

For information on downgrading a database upgraded from V6 to V5, refer to: Downgrading to V5 or V4.

Stage 3: Replication Instance File Upgrade

V6.3-001A does not require new replication instance files if you are upgrading from V5.5-000. However, V6.3-001A requires new replication
instance files if you are upgrading from any version prior to V5.5-000. Instructions for creating new replication instance files are in the
Database Replication chapter of the GT.M Administration and Operations Guide. Shut down all Receiver Servers on other instances that are
to receive updates from this instance, shut down this instance Source Server(s), recreate the instance file, restart the Source Server(s) and
then restart any Receiver Server for this instance with the -UPDATERESYNC qualifier.

Note

Without the -UPDATERESYNC qualifier, the replicating instance synchronizes with the originating instance using
state information from both instances and potentially rolling back information on the replicating instance. The -
UPDATERESYNC qualifier declares the replicating instance to be in a wholesome state matching some prior (or
current) state of the originating instance; it causes MUPIP to update the information in the replication instance file

of the originating instance and not modify information currently in the database on the replicating instance. After

this command, the replicating instance catches up to the originating instance starting from its own current state. Use
UPDATERESYNC only when you are absolutely certain that the replicating instance database was shut down normally
with no errors, or appropriately copied from another instance with no errors.

é Important

You must always follow the steps described in the Database Replication chapter of the GT.M Administration and
Operations Guide when migrating from a logical dual site (LDS) configuration to an LMS configuration, even if you are
not changing GT.M releases.

Stage 4: Journal Files Upgrade
On every GT.M upgrade:
* Create a fresh backup of your database.

* Generate new journal files (without back-links).

10

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch07.html
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch07.html

V6.3-001A

ﬁ Important

This is necessary because MUPIP JOURNAL cannot use journal files from a release other than its own for RECOVER,
ROLLBACK, or EXTRACT.

Stage 5: Trigger Definitions Upgrade

If you are upgrading from V5.4-002A/V5.4-002B/V5.5-000 to V6.3-001A and you have database triggers defined in V6.2-000 or earlier, you
need to ensure that your trigger definitions are wholesome in the older version and then run MUPIP TRIGGER -UPGRADE. If you have
doubts about the wholesomeness of the trigger definitions in the old version use the instructions below to capture the definitions delete
them in the old version (-*), run MUPIP TRIGGER -UPGRADE in V6.3-001A and then reload them as described below.

You need to extract and reload your trigger definitions only if you are upgrading from V5.4-000/V5.4-000A/V5.4-001 to V6.3-001A or if you
find your prior version trigger definitions have problems. For versions V5.4-000/V5.4-000A/V5.4-001 this is necessary because multi-line
XECUTE:s for triggers require a different internal storage format for triggers which makes triggers created in V5.4-000/V5.4-000A/V5.4-001
incompatible with V5.4-002/V5.4-002A/V5.4-002B/V5.5-000/V6.0-000/V6.0-001/V6.3-001A.

To extract and reapply the trigger definitions on V6.3-001A using MUPIP TRIGGER:

nkn

1. Using the old version, execute a command like mupip trigger -select=""" trigger_defs.trg. Now, the output file trigger_defs.trg

contains all trigger definitions.
2. Place -* at the beginning of the trigger_defs.trg file to remove the old trigger definitions.
3. Using V6.3-001A, run mupip trigger -triggerfile=trigger_defs.trg to reload your trigger definitions.
To extract and reload trigger definitions on a V6.3-001A replicating instance using $ZTRIGGER():
1. Shut down the instance using the old version of GT.M.

2. Execute a command like mumps -run %ZXCMD 'i $ztrigger("select")' > trigger_defs.trg . Now, the output file trigger_defs.trg contains
all trigger definitions.

3. Turn off replication on all regions.

4. Run mumps -run %XCMD 'i $ztrigger("item","-*") to remove the old trigger definitions.

5. Perform the upgrade procedure applicable for V6.3-001A.

6. Run mumps -run %XCMD 'if $ztrigger("file","trigger_defs.trg")' to reapply your trigger definitions.

7. Turn replication on.

8. Connect to the originating instance.

Note

Reloading triggers renumbers automatically generated trigger names.

Downgrading to V5 or V4
You can downgrade a GT.M V6 database to V5 or V4 format using MUPIP DOWNGRADE.
Starting with V6.0-000, MUPIP DOWNGRADE supports the -VERSION qualifier with the following format:

MUPIP DOWNGRADE -VERSION=[V5]|V4]

11

V6.3-001A

-VERSION specifies the desired version for the database header.

To qualify for a downgrade from V6 to V5, your database must meet the following requirements:
1. The database was created with a major version no greater than the target version.

2. The database does not contain any records that exceed the block size (spanning nodes).

3. The sizes of all the keys in database are less than 256 bytes.

4. There are no keys present in database with size greater than the Maximum-Key-Size specification in the database header, that is,
Maximum-Key-Size is assured.

5. The maximum Record size is small enough to accommodate key, overhead, and value within a block.

To verify that your database meets all of the above requirements, execute MUPIP INTEG -NOONLINE. Note that the integrity check requires
the use of -NOONLINE to ensure no concurrent updates invalidate the above requirements. Once assured that your database meets all the
above requirements, MUPIP DOWNGRADE -VERSION=V5 resets the database header to V5 elements which makes it compatible with V5
versions.

To qualify for a downgrade from V6 to V4, your database must meet the same downgrade requirements that are there for downgrading from
Vo6 to V5.

If your database meets the downgrade requirements, perform the following steps to downgrade to V4:
1. Ina GT.M V6.3-001A environment:

a. Execute MUPIP SET -VERSION=v4 so that GT.M writes updates blocks in V4 format.

b. Execute MUPIP REORG -DOWNGRADE to convert all blocks from V6 format to V4 format.

2. Bring down all V6 GT.M processes and execute MUPIP RUNDOWN -FILE on each database file to ensure that there are no processes
accessing the database files.

3. Execute MUPIP DOWNGRADE -VERSION=V4 to change the database file header from V6 to V4.
4. Restore or recreate all the V4 global directory files.

5. Your database is now successfully downgraded to V4.

Managing M mode and UTF-8 mode

With International Components for Unicode (ICU) version 3.6 or later installed, GT.M's UTF-8 mode provides support for Unicode™ (ISO/
IEC-10646) character strings. On a system that does not have ICU 3.6 or later installed, GT.M only supports M mode.

On a system that has ICU installed, GT.M optionally installs support for both M mode and UTF-8 mode, including a utf8 subdirectory of

the directory where GT.M is installed. From the same source file, depending upon the value of the environment variable gtm_chset, the
GT.M compiler generates an object file either for M mode or UTF-8 mode. GT.M generates a new object file when it finds both a source

and an object file, and the object predates the source file and was generated with the same setting of $gtm_chset/$ZCHset. A GT.M process
generates an error if it encounters an object file generated with a different setting of $gtm_chset/$ZCHset than that processes' current value.

Always generate an M object module with a value of $gtm_chset/$ZCHset matching the value processes executing that module will have.
As the GT.M installation itself contains utility programs written in M, their object files also conform to this rule. In order to use utility
programs in both M mode and UTF-8 mode, the GT.M installation ensures that both M and UTF-8 versions of object modules exist, the latter
in the utf8 subdirectory. This technique of segregating the object modules by their compilation mode prevents both frequent recompiles

and errors in installations where both modes are in use. If your installation uses both modes, consider a similar pattern for structuring
application object code repositories.

GT.M is installed in a parent directory and a utf8 subdirectory as follows:

12

http://icu-project.org

V6.3-001A

Actual files for GT.M executable programs (mumps, mupip, dse, lke, and so on) are in the parent directory, that is, the location specified
for installation.

Object files for programs written in M (GDE, utilities) have two versions - one compiled with support for UTF-8 mode in the utf8
subdirectory, and one compiled without support for UTF-8 mode in the parent directory. Installing GT.M generates both versions of object
files, as long as ICU 3.6 or greater is installed and visible to GT.M when GT.M is installed, and you choose the option to install Unicode
support. Note that on 64-bit versions of GT.M, the object code is in shared libraries, rather than individual files in the directory.

The utf8 subdirectory has files called mumps, mupip, dse, lke, and so on, which are relative symbolic links to the executables in the parent
directory (for example, mumps is the symbolic link ../mumps).

When a shell process sources the file gtmprofile, the behavior is as follows:

* If $gtm_chset is "m", "M" or undefined, there is no change from the previous GT.M versions to the value of the environment variable
$gtmroutines.

* If $gtm_chset is "UTF-8" (the check is case-insensitive),

* $gtm_dist is set to the utf8 subdirectory (that is, if GT.M is installed in /usr/lib/fis-gtm/gtm_V6.3-001A_i686, then gtmprofile sets
$gtm_dist to /usr/lib/fis-gtm/gtm_V6.3-001A_i686/utf8).

* On platforms where the object files have not been placed in a libgtmutil.so shared library, the last element of $gtmroutines is
$gtm_dist($gtm_dist/..) so that the source files in the parent directory for utility programs are matched with object files in the utf8
subdirectory. On platforms where the object files are in libgtmutil.so, that shared library is the one with the object files compiled in
the mode for the process.

For more information on gtmprofile, refer to the Basic Operations chapter of GT.M Administration and Operations Guide.

Although GT.M uses ICU for UTF-8 operation, ICU is not FIS software and FIS does not support ICU.

Setting the environment variable TERM

The environment variable TERM must specify a terminfo entry that accurately matches the terminal (or terminal emulator) settings. Refer to
the terminfo man pages for more information on the terminal settings of the platform where GT.M needs to run.

*

Some terminfo entries may seem to work properly but fail to recognize function key sequences or fail to position the cursor properly in
response to escape sequences from GT.M. GT.M itself does not have any knowledge of specific terminal control characteristics. Therefore,
it is important to specify the right terminfo entry to let GT.M communicate correctly with the terminal. You may need to add new
terminfo entries depending on your specific platform and implementation. The terminal (emulator) vendor may also be able to help.

GT.M uses the following terminfo capabilities. The full variable name is followed by the capname in parenthesis:

auto_right_margin(am), clr_eos(ed), clr_eol(el), columns(cols), cursor_address(cup), cursor_down(cudl),
cursor_left(cubl), cursor_right(cufl), cursor_up(cuul), eat_newline_glitch(xenl), key_backspace(kbs),
key_dc(kdch1),key_down(kcud1), key_left(kcubl), key_right(kcufl1), key_up(kcuul), key_insert(kich1),
keypad_local (rmkx),keypad_xmit(smkx), lines(lines).

GT.M sends keypad_xmit before terminal reads for direct mode and READs (other than READ *) if EDITING is enabled. GT.M sends
keypad_local after these terminal reads.

Installing Compression Libraries

If you plan to use the optional compression facility for replication, you must provide the compression library. The GT.M interface for
compression libraries accepts the zlib compression libraries without any need for adaptation. These libraries are included in many UNIX
distributions and are downloadable from the zlib home page. If you prefer to use other compression libraries, you need to configure or adapt
them to provide the same API as that provided by zlib.

13

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch03.html
http://www.zlib.net

V6.3-001A

If a package for zlib is available with your operating system, FIS suggests that you use it rather than building your own.

By default, GT.M searches for the libz.so shared library in the standard system library directories (for example, /usr/lib, /usr/local/lib, /usr/
local/lib64). If the shared library is installed in a non-standard location, before starting replication, you must ensure that the environment
variable LIBPATH (AIX) or LD_LIBRARY_PATH (GNU/Linux) includes the directory containing the library. The Source and Receiver Server
link the shared library at runtime. If this fails for any reason (such as file not found, or insufficient authorization), the replication logic logs a
DLLNOOPEN error and continues with no compression.

Although GT.M uses a library such as zlib for compression, such libraries are not FIS software and FIS does not support any compression
libraries.

14

Change History

V6.3-001A

Fixes and enhancements specific to V6.3-001A:

Id Prior Id Category Summary

GTM-8632 - Other On Linux, an environment variable to help manage
core file generation &

GTM-8685 - DB Forward Rollback Consistency with Journal Renaming

GTM-8700 - DB Fixes to issues related to statistics sharing

GTM-8702 - DB Always ensure before images when needed in TP
allocations

GTM-8705 Language ZSHOW/ZWRITE work correctly even if they result

in a garbage collection

V6.3-001

Fixes and enhancements specific to V6.3-001:

Id Prior Id Category Summary

GTM-4283 S9C04-002078 Other GT.M accepts routines with "DOS-style" terminators
&

GTM-5206 S9D12-002397 DB If possible, avoid journal file hardening when holding
a database critical section

GTM-6037 C9HO07-002874 DB Reporting of numeric subscripts in globals which
should not use them

GTM-6085 C9H10-002922 Other Update Process Reader Helper avoids rare abnormal
termination

GTM-6332 C9J01-003085 Other Code generation cleanup on Linux

GTM-6598 C9K04-003268 Admin Limit the time MUPIP BACKUP and INTEG wait for
kill-in-progress to clear

GTM-6699 D9K10-002792 DB Opt-in facility for statistics sharing &

GTM-6793 C9L04-003395 Language Limit MERGE into an lvn to 31 subscripts

GTM-6838 C9L06-003425 DB Asynchronous database 10 @

GTM-7593 - Admin More reliable journal flushing in edge cases under
replication

15

Change History

Id Prior Id Category Summary

GTM-7729 - Admin LOCKs have separate resource management
by default, but you can select shared resource
management

GTM-7778 - Other More consistent timestamps on AIX gtmsecshr
messages

GTM-7837 - Admin MUPIP REPLICATE -CHANGELOG waits for up to 25
seconds to confirm a change log request

GTM-7857 - DB Reporting of empty-string subscripts that conflict
with database settings

GTM-7922 - Admin MUPIP EXTRACT protects against concurrent
updates to region spanning updates

GTM-8254 - Language USE command accepts [I[|O]JCHSET for Sequential
Disks, SOCKETs and terminals &

GTM-8357 - Language GT.M initializes the value of $ZSTEP from the
environment variable $gtm_zstep if it is defined

GTM-8359 - Language More general support for indirect arguments to
TSTART commands and an explicit error for TSTART
in direct mode

GTM-8362 - Admin Allow updates during a MUPIP FREEZE

GTM-8366 - Language Clear $REFERENCE after an error in a global
reference

GTM-8373 - Admin Accept rapid changes to replication logs destination
files

GTM-8385 - Language Computations using literals largely performed at
compile time &

GTM-8427 - Language $ZCOLLATE() converts a GVN and
$ZATRANSLATE() an expression to a key
representation and back &

GTM-8430 - Other Improvement in critical section acquisition for x86_64
Linux

GTM-8447 - Admin MUPIP DUMPFHEAD provides lighter weight and
less problematic access to database state information
&

GTM-8542 - Admin MUPIP LOAD -FORMAT=Binary validates keys in the
extract records

GTM-8544 - Other Timer interrupt reduction

GTM-8547 - Admin Source Server handles reconnection errors more

gracefully.

16

Change History

Id Prior Id Category Summary

GTM-8553 - DB Eliminate an interaction between poollimit and
extended global references

GTM-8559 - Language $gtm_etrap and $gtm_trigger_etrap accept 8192 byte
strings &

GTM-8561 - Other Deal appropriately with M process data exceeding
2GiB

GTM-8562 - Other The configure install script creates routine directories
even when reusing an existing directory

GTM-8564 - Admin Protect an interrupted MUPIP REORG -ENCRYPT
from an intervening MUPIP REORG -TRUNCATE

GTM-8567 - Other configure script defaults locale to allow a UTF-8
installation to proceed

GTM-8568 - Language Fix three rare trigger update issues

GTM-8569 - Other Prevent rare duplicate messages when the number of
processes in an instance exceeds 32ki

GTM-8570 - Other Eliminate superfluous literals from object modules

GTM-8571 - Other Fix regression in *%GI for GO format containing any
empty data values

GTM-8572 - Language Prevent instances of pre-evaluation in $SELECT()

GTM-8573 - Language Compiler optimization for IF <literal> and command
postconditional literals &

GTM-8578 - Other Correct handling of non-char arrays in
%PEEKBYNAME()

GTM-8579 - Language Operator optimizations at compile time &

GTM-8582 - Admin Appropriate Source Server startup with Sync I/O and
4KiB sector sizes on an XFS filesystem

GTM-8583 - Language Prevent inappropriate MAXNRSUBSCRIPTS errors
from MERGE

GTM-8584 - Language Prevent GTMASSERT caused by a <NUL> character
generating a NOCANONICNAME error message

GTM-8590 - Language Certain timed operations deferred during
$ZCONVERT()

GTM-8593 - Language OPEN of an existing SOCKET device can modify ZFF
& delimiters; also $KEY is always in UTF-8 &

GTM-8595 - Language Fix to M mode handling of non-ASCII literals

GTM-8597 - DB Better protection against one type of random error

17

Change History

Id Prior Id Category Summary

GTM-8598 - Other Certain operations deferred while processing
character input

GTM-8599 - Admin Correct odd case for MUPIP JOURNAL -ROLLBACK -
FORWARD

GTM-8602 - Other MUPIP JOURNAL accepts multiple EOF records

GTM-8609 - Admin Improved error messaging for errors that occur
during the first access of a journal file

GTM-8610 - Admin The Receiver Server avoids rare situations that could
cause it to exit

GTM-8612 - Admin MUPIP LOAD handles minimal headers and long lines
gracefully

GTM-8613 - DB Protect against concurrent creation of global variable
with differing collation characteristics

GTM-8614 - Admin REQROLLBACK message indicates required -
ROLLBACK also requires -NOONLINE

GTM-8615 - Other Certain timed operations deferred during external
calls

GTM-8629 - Admin MUPIP RESTORE treats truncated input as an error

GTM-8637 - Other Prevent GTMASSERT2 from very long running jobs
performing TP transactions

GTM-8639 - Language ZSHOW "G" provides Block Transition to Dirty (BTD)
statistic for BG databases &

GTM-8640 - Language Accept <NUL> characters in literals use for
indirection and XECUTE

GTM-8641 - DB $ORDER(,-1) of global variables that span database
blocks returns correct result

GTM-8642 - Other Prevent rare inappropriate GTMASSERT2 from
MUPIP STOP of a process while changing encryption
keys

GTM-8645 - Other Improved (but imperfect) tracking of database
reference count

GTM-8654 - Admin Revised permission handling when determining
group membership &

GTM-8655 - DB Improved database structural integrity protection
against kill -9

GTM-8656 Admin Support for OpenSSL 1.1.0

GTM-8657 - Admin Replication from BC to SI handles multiple

connections with no intervening updates

18

Change History

Id Prior Id Category Summary

GTM-8659 - Other Better file cleanup in case of abnormal termination
during file creation

GTM-8660 - Admin Improved System Profiling for x86_64 Linux editions

GTM-8664 - DB Defer idle epoch while holding journal pool critical
section lock.

GTM-8668 - Admin Simplify GPG Agent interaction with the encryption
reference implementation

GTM-8672 - Language Adjustments to improve the memory utilization for
heap space (primarily local variable storage)

GTM-8676 - Other Fix to DSE FIND -KEY

GTM-8679 - Language Global name-level $ORDER() maintains SREFERENCE
GTM-8686 - Other "% TI works as documented

GTM-8687 - DB GT.M properly handles loading successive global

directories with increasing numbers of regions

GTM-8689 - Language Protect OPEN command against external actions

19

Database

i g
V6.3-001 GT.M defers the hardening (fsync) of a journaled database file (a potentially time consuming operation) to occur as much
as possible outside the database critical section, particularly when it is time to write an EPOCH record in the journal file. Previously, this
was done while holding the critical section which could affect database transaction throughput. (GTM-5206)

IE m_mn
V6.3-001 UPIP INTEG, DSE INTEG and in some instances VIEW "GDSCERT" produce a NONUMSUBS error if they encounter a
numeric subscript in a global variable tree that has been defined to only use string subscripts; previously, they did not report this issue.
(GTM-6037)

1E 200 L

V6.3-001 GT.M provides a fast and efficient mechanism for processes to share their database access statistics for other processes to
monitor. In addition GT.M now supports implicit instantiation of a database file. Please refer to the Additional_Information section for the
details and implications of this feature. (GTM-6699) &

Released as field test grade functionality in a production release, asynchronous IO is an option for database segments
using the BG access method; previously GT.M performed only synchronous I/O through the file system cache. Also, when invoked
from the shell, GDE returns a non-zero status in case it terminates with errors; previously it always returned a zero status, even if it
encountered errors. Note: when invoked from GT.M, GDE does not return a status. MUPIP RUNDOWN appropriately manages the
FTOK semaphore associated with a database to which it has read-only access; previously it inappropriately removed that semaphore if
the database was quiescent but its attachment counter had ever exceeded 32Ki simultaneous processes. Please refer to the Additional

Information section for details. (GTM-6838) &

When MUPIP INTEG, DSE INTEG -BLOCK, or VIEW "GDSCERT":1 processing encounter an empty-string ("null")
subscript that does not match current file header settings for the null characteristic they issue a DBNULCOL or NULLSUBS error. If
MUPIP LOAD-FORMAT=BINARY encounters empty-string subscripts in an extract it is loading on a database that does not permit
such subscripts, it produces a NULLSUBS error. Previously, these functions did not report these errors (MUPIP LOAD did not load the
offending data). Also, if MUPIP LOAD -FORMAT=BINARY encounters two keys that are the same except for their representations of
empty string subscripts, it produces a warning message and discards the one whose representation does not match that of the database
into which the data is being loaded. (GTM-7857)

IE m_mn
V6.3-001 Extended references work correctly when poollimit is enabled. Previously, such a combination could produce
GTMASSERT failures. This issue was only observed in the GT.M development environment, and was never reported by a user.
(GTM-8553)

ie a_mn
V6.3-001 GT.M protects itself against one type of random error in a control field used for buffer management. Previously, recovery
required shutting the database down. The error observed most likely resulted from some sort of hardware malfunction. Note that FIS
recommmends the use of ECC RAM in production systems. (GTM-8597)

GT.M issues a ACTCOLLMISMTCH error in case multiple processes concurrently attempt to create the first global node
of a global variable using differing collation characteristics (defined through the -GBLNAME section of their respective global directories).
Previously, it was possible for processes to proceed to update with conflicting views of the global's collation, resulting in global nodes
with misaligned collation sequences in the same global, creating an application level data integrity error. This issue was only observed in
the GT.M development environment, and was never reported by a user.(GTM-8613)

iE a_mn
V6. 3-001 $ORDER(gvn,-1) and $ZPREVIOUS(gvn) work correctly in case of spanning nodes. Since GT.M V6.2-002, due to a
regression introduced in GTM-7917, it could return the same value as the last subscript in the input key in case the global corresponding
to gvn contained spanning nodes. For example if "X(3) existed and was a spanning node, $ORDER("X(4),-1) would return 4 instead of 3,

20

Database

potentially leading to infinite loops. If *X(3) was not a spanning node, SORDER() would return the correct value. The return value was
unaffected by the existence or non-existence of a subtree of "X(3). (GTM-8641)

GT.M does better in maintaining database integrity in the face of a kill -9 of a process in the middle of a database
commit. Previously, if a process trying to update a particular GDS block was killed in the middle of a commit, it was possible to lose prior
updates to just that block within the same epoch, resulting in a database file with structural damage. Note that FIS continues to strongly
recommend against kill -9 of processes that have opened a database file. (GTM-8655)

ir m_n
V6.3-001 GT.M defers performing an idle epoch if it concurrently holds the journal pool critical section lock. Previously, under
rare conditions, performing the idle epoch in this situation could result in database deadlock. This issue was only observed in the GT.M
development environment, and was never reported by a user. (GTM-8664)

GT.M marks journal files as current or not current, which allows it to deal more appropriately with an operational situation in which
an operator renamed an older journal file as current. Previously, GT.M MUPIP ROLLBACK -FORWARD could not detect this operational
issue and consequently failed to deliver a consistent state at completion. (GTM-8685)

GT.M now properly handles loading multiple global directories with increasing numbers of regions. Previously, this could
have resulted in memory corruption if a process first opened the first global directory with fewer regions AND both global directories had
at least one global variable name that spanned multiple regions. This issue was never reported by users and was only seen in the GT.M
development environment. (GTM-8687)

Operations on statistics database files (e.g. VIEW "STATSHARE", VIEW "NOSTATSHARE", direct access to *%YGS global nodes) work
correctly even in the case a process accesses the same statistics database file through more than one global directory. In GT.M V6.3-001,
this could cause the process to terminate abnormally with a segmentation violation (SIG-11). GT.M correctly creates statistics database
files (which are always created dynamically) even in case of heavy database contention amongst processes. In GT.M V6.3-001, if a process
in a TP transaction (TSTART/TCOMMIT fence) was in its final retry (due to restarts from other concurrently running processes), it was
rare but possible to encounter a deadlock. $ZPEEK issues a BADZPEEKARG error when its argument specifies a non-existent lower-
case region name. In GT.M V6.3-001, this terminated the process with a segmentation violation (SIG-11). MERGE, ZWRITE, $DATA(),
$ORDER(), and $QUERY() involving "%YGS open any implicitly associated statistics database files when run outside of a TP transaction.
In GT.M V6.3-001, they could ignore *%YGS nodes corresponding to regions previously unopened or untracked by the process. Note that
these operations within an explicit TP transaction do not implicitly open any not-yet-open statistics database until after the transaction
commiits. GT.M correctly handles a MUPIP SET -REPLICATION=ON for a region which was still replicating after journaling turned off
(in the "was_on" state). In GT.M V6.3-001, due to a regression introduced by GTM-7593, an exiting process executing in a small window
of instructions in database rundown logic could, in rare, cases terminate with a segmentation violation (SIG-11). MUPIP SET JOURNAL
and MUPIP REPLICATE -INSTANCE_CREATE issue appropriate errors when their input attempts to create journal and/or replication-
instance file names whose absolute path is more than 255 bytes long. Previously, it was possible for these commands to abnormally
terminate with a "stack smashing detected" error due to GT.M-internal buffer overflows. All these issues were only observed in the GT.M
development environment, and were never reported by a user. (GTM-8700)

Updates within explicit (TSTART/TCOMMIT) or implicit (spanning nodes or regions, or triggers) transactions requiring one or more
additional blocks reliably write before images (if configured) to the journal file or to a MUPIP BACKUP -ONLINE. Missing before images
could cause incorrect or damaged databases after a MUPIP JOURNAL -RECOVER or -ROLLBACK, or in a backup. In GT.M V6.3-001, due
to a flaw in GTM-8637, in rare cases when choosing a previously freed block, GT.M failed to appropriately write a before image. This
issue were only observed in the GT.M development environment, and was never reported by a user.(GTM-8702)

21

Language

* e 0
V6.3-001 MERGE into a local variable (lvn) target limits the number of target subscripts to the maximum number supported by

*

*

*

GT.M (currently 31); previously, MERGE could produce variables with 32 subscripts which could cause subsequent problems. (GTM-6793)

ir m_n
V6.3-001 The USE command accepts [I|OJCHSET as valid deviceparameters. It is possible to change the character set of an open
device. In addition to USE, the OPEN command also changes the character set of an already opened device including Sequential Disk,
SOCKET and terminal devices. It is useful to deal with binary data intermixed with character data. Previously, there was no documented

way to change the character set of an open device. (GTM-8254) &

ie n_mn
V6.3-001 GT.M takes the initial value of $ZSTEP from the environment variable gtm_zstep, with a default value of "B" (a BREAK
command) if gtm_zstep is not defined; previously, changing the default value required a SET command. (GTM-8357)

VE.3-001 TSTART commands with indirect arguments work correctly in GT.M. Previously, they allowed only specification of a
single local variable with no parentheses, SERIAL flag or transaction id parameter. Also, use of TSTART in direct mode is prohibited and
generates a NODMTSTART error. Previously, TSTART/TCOMMIT sometimes worked when on the same direct mode command line but
more often got strange errors and caused memory leaks at best. (GTM-8359)

ie n_mn
V6.3-001 GT.M assigns an empty string to SREFERENCE when there is an error while constructing a subscripted global variable.
Previously, GT.M assigned the last successful subscripted global variable to SREFERENCE. (GTM-8366)

ie a_mn
V6.3-001 GT.M performs arithmetic operations involving only literals at compile time, with the exception of divide and integer
divide (/ and \) by zero (0), which because of their use to intentionally produce an error is left to run time. Note that modulo (#) produces a

compile time error. Previously, GT.M did all such calculations at run-time. (GTM-8385) &

* & 0
V6.3-001 $ZCOLLATE(glvn,intexpr[,{0|1}]) returns a transformed representation of a first argument glvn using the alternative

transform specified by the second argument intexpr that, by default, or if the optional third argument is zero (0), represents a normalized
form that can be used as an operand to the follows (]) or sorts-after operator ([[) such that, if both operands are in the normalized form,
the result is independent of alternative collation. If the optional third argument is non-zero, $ZCOLLATE() returns a reverse transform of
the first argument intended to restore the normalized form to the native M glvn representation. $ZCOLLATE() replaces the "YGVN2GDS"
and "YGDS2GVN" arguments to $VIEW(), which are deprecated. $ZATRANSFORM(expr,intexpr[,{0[1}][,{0]1}]) returns a transformed
representation of a first argument expr, treated as a subscripted or unsubscripted key, using the alternative transform specified by

the second argument intexpr in a normalized form that can be used as an operand to the follows (]) or sorts-after (]]) operator such

that, if both operands are in the normalized form, the result is independent of alternative collation. If the optional third argument is
non-zero, $ZATRANSFORM() returns a reverse transform of the first argument intended to restore a normalized form to the native

M expr representation. By default, or if the optional fourth argument is zero, $ZATRANSFORM()returns the transformation of expr
using standard M collation of numbers before strings, causing numbers to sort like strings; if the optional third argument is non-zero,

$ZATRANSFORM() treats all expressions as strings.(GTM-8427) &

i g
V6.3-001 $gtm_etrap and $gtm_trigger_etrap accept up to 8192 bytes and produce a LOGTOOLONG message in the syslog when
ignoring a value longer than 8192. Previously, process initialization limited both environment variables to 4096 bytes and did not log any
message for an over-length $gtm_trigger_etrap. This issue was only observed in the GT.M development environment, and was never

reported by a user. (GTM-8559) &

$ZTRIGGER() operations that affect triggers executed in the same transaction work as documented. Previously, in
rare situations, transactions that performed $ZTRIGGER() operations in some, but not all, retries and invoked a trigger affected by the
$ZTRIGGER() operation in some, but not all, retries could result in a TRIGDEFBAD or SIG-11. Also, trigger load operations in which
an error occurred only perform a validity check on trigger delete by name operations. Previously, if an error occurred during a trigger

22

Language

load, a subsequent trigger delete by name operation resulted in a TRIGDEFBAD if the name targeted a trigger installed as part of the
current load operation. In addition, concurrent MUPIP REORG works appropriately with GT.M triggers. Previously, in rare situations, a
concurrent MUPIP REORG could cause GT.M trigger operations to issue TRIGDEFBAD errors. These issues were only observed in the
GT.M development environment, and were never reported by a user. (GTM-8568)

V6.3-001 $SELECT() does not pre-evaluate any expressions. A regression introduced in V6.2-002A related to GTM-8376 resulted in
inappropriate pre-evaluation of arguments in some cases, especially when both FULL_BOOLEAN and gtm_side_effects modes were off.
This caused inappropriate behavior such as errors in $SELECT() formulations intended to prevent execution of inappropriate indirection
or $INCREMENT() acting on a global variable. (GTM-8572)

When the argument of an IF command is a literal value or expression, the GT.M compiler generates code to set $TEST
appropriately and ignores the rest of the line. When the argument of a command postconditional is a literal value or expression, the GT.M
compiler evaluates the postconditional and either generates code for an unconditional command or omits generation for the command.
Previously, the computation was performed at run time. Note that literal postconditionals evaluating to 0 result in smaller object modules

than literal postconditionals evaluating to non-zero values. (GTM-8573) &

As part of compilation, GT.M optimizes unary operations, and binary operations, where both operands are literals; cases
where the first operand is an empty string, divide and integer divide (/ or \) by zero (0) are exceptions. In addition, it treats $ZCHSET

and $ZVERSION as compile time constants. Please observe the following cautions: ensure you compile with the same GT.M version,
$gtm_chset, $gtm_local_collate, $gtm_patnumeric, $gtm_pattern_file and $gtm_pattern_table values (or lack thereof) as those used to
run your application, and use variable operands, indirection or XECUTE for operands used with pattern match (?) or sorts-after (]]) if the
application changes the run time values controlled by those environment variables. Note that the compiler detects a few errors at slightly
different points which may change some messages, hopefully for the better. In addition, this change prevents a possible segmentation
violation (SIG-11) in V6.3-000[A] when attempting to MUMPS -RUN of a routine with no current object module when the routine uses

ZWRITE. (GTM-8579) @

MERGE permits its target to hold the maximum number of subscripts supported by GT.M (currently 31). Beginning with
V6.1-000 the change associated with GTM-7867 could cause inappropriate MAXNRSUBSCRIPTS errors when the source and the target
were both global variables, most likely when the source had many subscripts. The workaround was to MERGE the source into a local
variable and then MERGE from there to the actual target. (GTM-8583)

IE m_mn
V6.3-001 $QLENGTHY(), $QSUBSCRIPT() and $ZCOLLATE() use ZWRITE format to report the namevalue in any
NOCANONICNAME error. Previously, a <NUL> byte in the input resulted in a GTMASSERT. (GTM-8584)

ir m_n
V6.3-001 GT.M defers certain timed operations while performing a $ZCONVERTY(); previously, the function could hang if
interrupted by an timed operation that invoked non-reentrantsystem memory management services. This issue was only observed in the
GT.M development environment, and was never reported by a user.(GTM-8590)

Deviceparameters on the OPEN command for SOCKET device containing open sockets can modify the ZFF and delimiters
of the current socket; previously, these could only be changed with a USE command. In addition, $KEY and $ZB for SOCKET devices
appropriately return UTF-8 representations of the characters; previously, if the device character set was UTF-16[BE|LE], the terminator
representations were inappropriately also encoded in UTF-16[BE|LE]. (GTM-8593) &

In M mode, $ASCII() of literal characters returns the correct value. In V6.3-000/-000A, this returned an incorrect value,
typically -1 (it worked correctly for ASCII literal characters, for variable arguments, and in UTF-8 mode). Note that this is an edge

case: instead of coding $ASCII() of a literal, one would normally just use the value, e.g., 65 instead of $ASCII("A"), and furthermore, the
supported character set for literals in M programs is a subset of ASCII, whereas the issue affected literals corresponding to the non-ASCII
characters $CHAR(128) through $CHAR(255). (GTM-8595)

ir m_n
V6.3-001 ZSHOW "G" and $VIEW("GVSTAT") report a count BTD, which for database regions that use the BG access method is
the number of times a global buffer has transitioned from an clean (unmodified) state to a dirty (modified) state. For database regions that

use the MM access method, BTD is zero. (GTM-8639) &

23

Language

* & 0
V6.3-001 GT.M accepts NUL characters (SCHAR(0)) within literals used in indirection and XECUTE; previously, it generated errors
for that character. (GTM-8640)

GT.M now reduces the active memory usage when a process uses a large amount of memory then subsequently uses

a significantly reduced amount. Previously, active memory usage was distributed across the whole memory segment. In addition,
$VIEW ("SPSIZE") now returns three sizes (as comma separated values): the total amount of space allocated to the heap, amount of heap
space in use, and amount of heap space reserved. The reserved space is used to reduce the active memory usage as mentioned above.
GT.M now extends memory used for local variables more frequently when garbage collection does not reclaim a significant amount of
space.(GTM-8672)

Name-level SORDER() on globals maintains $REFERENCE analogously to other SORDER() invocations, that is:

by reflecting the first argument unless a subsequent global reference in the second argument takes precedence; previously, it left
$REFERENCE empty except when the second argument was a variable. This also applies to $ZPREVIOUS(), which is a deprecated way to
do a $ORDER(,-1). (GTM-8679)

GT.M protects OPEN commands against the possibility they don't complete due to an interrupt or device failure;
previously, there was a very small window where external actions such as <CTRL-C>, MUPIP INTRPT, or a device disconnect could
leave a device partially set up, which could cause a subsequent segmentation violation (SIG-11). This was only encountered in the GT.M
development environment and was never reported by a user. (GTM-8689)

ZSHOW/ZWRITE work correctly even if they encounter a relatively rare heap management action. Previously, these commands could
terminate with a segmentation violation (SIG-11) in these rare cases. This issue was only observed in the GT.M development environment,
and was never reported by a user. (GTM-8705)

24

System Administration

*

MUPIP BACKUP and INTEG wait approximately one minute for any kill-in-progress to clear. Previously, the times
exceeded the documented one minute time by three times for INTEG and an amount for BACKUP that was a function of the number of
regions with kill-in-progress indicators; abandoned indicators showed this issue most strongly. These problems were never reported by
users and were only seen in the GT.M development environment. (GTM-6598)

GT.M flushes dirty journal and database buffers to disk in a timely manner in a replicated environment. Additionally,

the Source Server recovers from an unflushed journal buffer situation by taking on the task of flushing, if needed, every eight (8) seconds
while waiting for a journal record in the journal file. It logs a "REPL_INFO : Source server did flush of journal file" message to record
such an event. Previously, it was possible in a rare case, involving journal file switches and process exits, for the buffers to stay unflushed
causing the Source Server to issue a "REPL_WARN: Check for problems with journaling" alert every 50 seconds. The workaround for this
situation was to start a new process that did an update or shut the source server down. (GTM-7593)

GDE ADD, CHANGE and TEMPLATE for REGION objects recognize the -[NO]JLOCK_CRIT qualifier; MUPIP SET
recognizes a -[NO]JLCK_SHARES_DB_CRIT qualifier. Both control whether LOCK actions share the same resource and management as
the database or use a separate resource and management. The GDE choice only affects database file creation with MUPIP CREATE. GDE
SHOW -ALL and -REGION, and DSE DUMP -FILEHEADER each display the choice, which defaults to Sep(arate)/FALSE. Previously LOCK
actions used the same resource and manager. While we expect this to have either no effect or a positive effect on performance depending

on the application use patterns, it is different by default, so you should be aware of this change. (GTM-7729) &

iE a_mn
VE.3-001 MUPIP REPLICATE -CHANGELOG waits for up to twenty-five seconds for confirmation from Source and Receiver
Server processes that the change succeeded (it may not for a variety of reasons). Previously, only MUPIP REPLICATE -RECEIVER -
CHANGELOG waited; MUPIP REPLICATE -SOURCE -CHANGELOG did not. (GTM-7837)

iE a_mn
VE.3-001 MUPIP EXTRACT appropriately handles the case where a concurrent process updates a spanning node that MUPIP
EXTRACT is processing; previously, this situation could cause a segmentation violation (SIG-11). Note that running an EXTRACT without
-FREEZE and with concurrent activity produces an inconsistent output (GTM-7922)

iE a_mn
VE.3-001 UPIP FREEZE -ON -ONLINE freezes updates to the database file, but allows updates to memory and journal files to
continue. As for normal freezes, the Online Freeze is removed by a MUPIP FREEZE -OFF. Online Freeze may only be used on regions with
the BG access method.

In the Online Freeze state, GT.M prevents casual database updates from occurring, including background flushing and timed epochs.
However, certain conditions require updates to the database file, including full database buffers, journal file switches, and database

file extensions. The -[NOJAUTORELEASE option may be used with the -ON option to select the behavior in these conditions, with -
AUTORELEASE being the default. If a GT.M process autoreleases an Online Freeze, it sends an OFRZAUTOREL message to the operator
log, all processes will be allowed to write to the database file, and a subsequent MUPIP FREEZE -OFF will warn that an Online Freeze had
been removed. In this case any database copy or snapshot should be considered suspect and retried. If -NOAUTORELEASE is specified,
memory updates will be suspended rather than release the freeze. If a process encounters this situation while holding a critical resource, it
will send an OFRZCRITSTUCK message to the operator log and wait, which will prevent other operations on the region. When the Online
Freeze is removed by a MUPIP FREEZE -OFF, the waiting process will send a OFRZCRITREL message to the operator log.

Some commands which cannot run with an Online Freeze, e.g., MUPIP BACKUP and MUPIP SET -JOURNAL, will either autorelease
or issue an OFRZACTIVE error, depending on the -[NOJAUTORELEASE option used to set the freeze. Other commands, e.g., MUPIP
EXTEND, MUPIP REORG -TRUNCATE, and MUPIP INTEG -ONLINE, will either autorelease or hang until the Online Freeze is released.

A MUPIP FREEZE -OFF must always follow a MUPIP FREEZE -ON -ONLINE, even in the case of an autorelease, to ensure that normal
operations are resumed. In the case of an autorelease, the MUPIP FREEZE -OFF command will report a OFRZNOTHELD warning.

25

System Administration

To maximize the time that updates to memory may continue, MUPIP FREEZE -ON -ONLINE flushes all dirty buffers to disk and performs
a journal file switch, but it does not perform a database extension. If a database file is nearly full, the user should consider doing a
database file extension before the Online Freeze. When the previous FREEZE operation was -ONLINE, a MUPIP FREEZE -OFF flushes any
dirty buffers to disk and performs a journal file switch. These operations are performed in such a way as to minimize impact to processes
doing memory updates, but they do involve performing epochs, so there may be some delay to other processes.(GTM-8362)

ie a_mn
V6.3-001 MUPIP replication servers accept changes to their log file destinations immediately after the last change; previously, they
occasionally required a wait between changes. (GTM-8373)

MUPIP DUMPFHEAD [-FILE <file-name>][-REGION <region-list>] provides a way to get substantially the same
information as DSE DUMP -FILEHEADER, but in the same format as provided by %PEEKBYNAME, and without connecting to database
files. It is both lighter weight than DSE and avoids the need to use DSE, for which operator error can have serious consequences. The
formatting is more regular than that of DSE. As MUPIP DUMPFHEAD does not open shared memory, values reported for dynamic fields
that are in shared memory may be stale. Because MUPIP DUMPFHEAD is implemented in MUMPS, application code can call getfields”
%DUMPFHEAD (varname,dbfilename), where varname is a local variable name passed by reference, and dbfilename is the name of a
database file, to generate the records dumped by MUPIP. Note that this facility supersedes *%2DSEWRAP, which is deprecated, is not

updated or tested, and eventually will be withdrawn. (GTM-8447) &

IE m_mn
V6.3-001 MUPIP LOAD -FORMAT=BINARY validates the keys in the extract records and reports any errors it detects before
skipping the bad record and any following records in the block. Previously, LOAD of a binary extract did not validate incoming keys.
(GTM-8542)

ir m_n
V6.3-001 The Source Server handles reconnects after errors gracefully. Previously the Source Server could exit with a
REPLBRKNTRANS error after an error like REPLNOTLS that causes the Source and Receiver Servers to disconnect in middle of
renegotiating the replication starting point. This issue was identified in FIS testing and has not been reported by any customers.
(GTM-8547)

MUPIP REORG -ENCRYPT works correctly when reissued after a prior invocation of the same command was interrupted.
Previously, if a MUPIP REORG -TRUNCATE was run in between and did truncate the database, it was possible for the reissued MUPIP
REORG -ENCRYPT to incorrectly succeed even though it did not finish the (re)encryption. This was particularly evident if one ran a
MUPIP SET -ENCRYPTIONCOMPLETE command on the same database which correctly indicated the encryption as incomplete. This
issue was only observed in the GT.M development environment, and was never reported by a user. A workaround for this was to run a
MUPIP EXTEND on the database and reissue the MUPIP REORG -ENCRYPT. (GTM-8564)

ie a_mn
V6.3-001 Enabling sync_io for journaling works correctly on XFS filesystems configured with 4KiB sector sizes. Previously, the
Source Server could experience a REPLFILIOERR error with the message "Error in reading jfh in update_eof_addr" when reading from
journal files. (GTM-8582)

MUPIP JOURNAL -ROLLBACK -FORWARD correctly rolls the database forward in the case one region has a journal
file with very limited update activity (less duration than the epoch interval of that region). Previously, it was possible, in the unlikely
case of a crash (where the journal files were not cleanly shutdown) where a region had only a single epoch matching the safe restore
time determined across all regions, for ROLLBACK to inappropriately set the database file header as if it had restored updates beyond
those it actually restored, which could cause a subsequent replication restart to miss updates. This issue was only observed in the GT.M
development environment, and was never reported by a user. (GTM-8599)

The error messages for INLTRANSLSS and JNLTRANSGTR now include the transaction numbers in the database file
header and journal file header. The accompanying JNLOPNERR prints the name of the database and journal files. Previously, when issued
alongside a JNLSENDOPER message, JINLOPNERR missed information about the database file, and there were no transaction numbers

for INLTRANSLSS or JNLTRANSGTR. The error JNLREADEOF omits the journal file name as the accompanying JNLEXTEND message
prints this information.[/p][p]The error messages INLBADRECFMT, JNLVSIZE, and CRYPTJNLMISMATCH include context information

26

System Administration

when a process fails to open a journal file for thefirst time. Previously, these error messages did not include some or all of the context
information. (GTM-8609)

The Receiver Server handles unusual protocol messages appropriately. Previously, in extremely rare circumstance, the
Receiver Server could mishandle such a message and terminate with a segmentation violation or REPLTRANS2BIG error preceded by
numerous "Received UNKNOWN message" messages. This issue was only observed in the GT.M development environment, and was
never reported by a user. (GTM-8610)

MUPIP LOAD does not terminate abnormally with a segmentation fault (SIG-11) when delivering the MAXSTRLEN error
nor does MUPIP LOAD treat a 12 byte header as a MAXSTRLEN error. Previously, a 12 byte header line in a GO or ZWRITE extract could
cause GT.M to terminate abnormally with a segmentation fault (SIG-11). The workaround for the short header was to edit it in order to
pad the length. (GTM-8612)

IE m_mn
V6.3-001 The REQROLLBACK message indicates that required -ROLLBACK also requires the -NOONLINE qualifier.(GTM-8614)

MUPIP RESTORE issues an IOEOF error and exits with a non-zero status when supplied with a truncated backup file.
Previously, it used to prompt for the next volume to be mounted and later issue a SYSTEM-E-UNKNOWN error and incorrectly exit with a
zero status indicating normal exit. Additionally, it cleans up database semaphore ipcs in case of errors; previously left two semaphores per
database in case of errors.(GTM-8629)

ie n_mn
V6.3-001 GT.M considers available process groups when determining permissions based on group membership for IPCs and files,
like journals and snapshot files. Previously, when GT.M failed to determine group membership, GT.M inappropriately removed owner
access to the IPCs that it created resulting either a PERMGENFAIL error or DBFILERR error followed by the supplemental text "Error with

database control semctl SETVAL". (GTM-8654)

ie n_mn
V6.3-001 The GT.M reference encryption plugin is compatible with OpenSSL 1.1.0. Previously, the plugin would not compile with
OpenSSL 1.1.0. (GTM-8656)

GT.M replication appropriately handles the case where a receiving Supplementary Instance (P) connects to a non-
supplementary Originating Instance (A) for the first time and then reconnects with no intervening updates. Previously, if the A->P
connection occurred twice with no intervening update, replication from P to another receiving Supplementary Instance (Q) failed with a
STRMSEQMISMTCH error. (GTM-8657)

i g
V6.3-001 GT.M makes more information available to system profiling tools such as perf. [x86_64 Linux] (GTM-8660)

The GT.M reference encryption plugin Makefile copies the pinentry.m routine into $gtm_dist/plugin/gtmcrypt and

the GT.M reference encryption plugin pinentry program includes $gtm_dist/plugin/r in the gtmroutines search path. Previously, if

the encryption plug-in source archive was not extracted in $gtm_dist/plugin/gtmcrypt, the custom pinentry program failed to load

the pinentry routine and the user would be prompted via the system default pinentry program.The GT.M Encryption plugin properly
compiles when GT.M is installed without Unicode support. Previously, this would result in the Makefile exiting with an error. The GT.M
encryption plugin includes support for loopback pinentry mode (available starting with GnuPG 2.1.12) which simplifies unattended
passphrase handling.(GTM-8668)

27

https://en.wikipedia.org/wiki/Perf_%28Linux%29

Other

*

ie n_mn
V6.3-001 The GT.M compiler accepts input with <CR><LF> line termination (common on some non-POSIX Operating Systems);
previously, it did not. Our thanks to the membership of the May 2016 "Hacking GT.M" workshop for this change. (GTM-4283) &

*

ie a_mn
V6.3-001 Update Process Reader Helpers operate correctly. Previously, under rare conditions the Reader Helper would encounter
a segmentation violation (SIG-11). This was only encountered in the GT.M development environment, and was never reported by a user.
GTM-6085)

—~~

*

ir m_n
V6.3-001 Code using literals on Linux on x86_64 is faster, and the generated object file is smaller than previously. Compilation
is also faster, which should, in turn, speed up operations using indirection and XECUTE. As with any performance enhancement, actual
benefit will vary, depending on the extent to which application code uses constructs that benefit from this change. [x86_64 Linux]
GTM-6332)

—~~

*

V6.3-001 The gtmsecshr wrapper on AIX uses the standard system timezone taken from /etc/environment for the timestamps of
any syslog entries it generates. It also passes this timezone on to gtmsecshr to use for its entries as well. Previously, syslog timestamps
from the AIX gtmsecshr wrapper could be either in the timezone of the process that started gtmsecshr or UTC, depending on whether
environment variables had been cleared at the time of the error or not. [AIX] (GTM-7778)

ie a_mn
V6. 3-001 Critical section acquitions are slightly more efficient. [x86_64 Linux] (GTM-8430)

*

V6.3-001 GT.M manages time-related tasks in a more lightweight fashion. On heavily loaded systems with large numbers of
processes, this should reduce the number of interrupts and context switches that the operating system needs to process. In addition, GT.M
processes time-related tasks in a timely fashion. Previously, in rare conditions, timed operations (e.g., HANG) could be delayed up to eight
seconds. This issue was only observed in the GT.M development environment, and was never reported by a user. (GTM-8544)

*

6. 3-00
V6.3-001 A GT.M process functions correctly when its M data heap exceeds 2GiB. Previously, such a process could experience
damage to internal data structures, leading to incorrect process behavior including process termination with segmentation violations
SIG-11). This issue was only observed in the GT.M development environment, and was never reported by a user. (GTM-8561)

—~

*

1% .00
VE.3-001 The GT.M configure installation script always creates the plug-in routine source and object file directories. Previously,
when installing over an existing directory the installation script did not create the plug-in routine source and object file directories.
GTM-8562)

—~~

*

IE m_mn
V6.3-001 When directed to install GT.M with UTF-8 support, the configure script defaults to the C.UTF-8 locale when systems have
none defined. Previously, the configure script terminated prematurely on such a condition. This was only seen by users building GT.M
from source in a restricted build environment. (GTM-8567)

*

V6.3-001 When starting up, the replication Receiver Server only issues a NOMORESEMCNT message to the syslog if it is

the first process to determine that more than 32Ki GT.M processes have run in that instance. Previously, in very rare cases, it could
inappropriately log a duplicate message. This issue was only observed in the GT.M development environment, and was never reported by
a user. (GTM-8569)

*

iE a_mn
VE.3-001 The GT.M compiler reduces the size of object modules by not placing literals in an object module once the compilation
eliminates a need for them. Previously, it sometimes left obsolete literals in the object files; in V6.3-000[A], GTM-7762 made this a more
significant issue. (GTM-8570)

28

Other

* r'|. AL
V6.3-001 "%GI appropriately handles empty string data values in GO format input. In V6.3-000 and V6.3-000A, " %GI ignored such

*

input, leading to incorrect loads. The workaround was to use ZWR format or MUPIP LOAD. (GTM-8571)

"%PEEKBYNAME() handles cases where the type of data it is to access is an array of known types by returning a comma
delimited list of the array elements; for example, $$" %2PEEKBYNAME("sgmnt_data.tp_cdb_sc_blkmod",base) returns a string in the

form "0,0,0,0,0,0,0,0" because the arguments identify an array of 8 integers (type int). Previously, this kind of invocation produced a
BADZPEEKFMT error. (GTM-8578)

16, -0
V6.3-001 GT.M briefly defers certain operations while processing character input; previously, the non-reentrant system memory
management services used in character-based input could hang a process if their timed operations also invoked memory management
services. (GTM-8598)

MUPIP JOURNAL accepts multiple EOF records in the same journal file. Multiple EOF records only occur when the last
process to halt out of a journaled database terminates abnormally just before cleanly shutting down the journal file. Note that FIS strongly
recommends against using kill -9 on any GT.M process performing database updates. Previously, MUPIP JOURNAL produced a GTM-E-
JNLUNXPCTERR error when it encountered multiple EOF records in a journal file. (GTM-8602)

16,300
V6.3-001 GT.M prevents certain timed operations during external calls. Previously, in an environment using encrypted
databases,an external call could cause the process to hang due to an invocation of non-reentrant memory management system services
also invoked by the encryption plug-in. (GTM-8615)

The gtm_coredump_filter environment variable specifies the mappings of the process address space for a GT.M process, with the bits
having the same meaning as those specified for /proc/<pid>/coredump_filter in "man 5 core". If unspecified, GT.M uses a value of 0x73; a
value of -1 prevents GT.M from modifying the coredump_filter value. A running process can change its coredump_filter by writing to the
file /proc/<pid /coredump_filter, and can query the current value by reading that file. [Linux x86_64] (GTM-8632)

i 5
V6.3-001 Processes handle a large volume of TP updates appropriately; previously, a long-running process, such as an Update
Process, adding new global nodes could eventually inappropriately terminate with a GTMASSERT2. (GTM-8637)

GT.M appropriately handles the case of a process receiving a MUPIP STOP while another process has recently been
performing a MUPIP REORG -ENCRYPT to change the encryption keys. In V6.3-000[A] this combination could rarely cause the stopped
process to terminate with a GTMASSERT?2 error. This caused no problems for the database. This issue was only observed in the GT.M
development environment, and was never reported by a user. (GTM-8642)

GT.M more accurately maintains the count of the number of processes attached to a database file $$"
%PEEKBYNAME("node_local.ref cnt",<region>) or "Reference count” in DSE DUMP -FILE output. Note that GT.M does not rely on

this field, which exists to supply operational information to the user, but which may be inaccurate if processes are subject to kill - 9 -
something that FIS recommends against and that GT.M does not guard against. Previously, in case the database has the quick-rundown
mode enabled (MUPIP SET -QDBRUNDOWN), this counter could become inaccurate even without interference from kill -9. (GTM-8645)

ie a_mn
V6.3-001 When GT.M exits with a fatal error, such as GTM-F-MEMORY, it cleans up any empty file it was in the process
of creating at the time of the failure. This applies to GT.M OPEN, DSE OPEN and a number of MUPIP functions which create files.
Previously, this unusual situation left an empty file and in some cases the process terminated with a segmentation fault (SIG-11).
(GTM-8659)

ie a_mn
V6.3-001 DSE FIND -KEY reports the correct path leading to the input key. For versions V6.0-000 to V6.3-000A, due to a
regression introduced by GTM-6341, it sometimes reported an incorrect Global tree path if the input key is not found in the database file.
(GTM-8676)

ie Ao
VE.3-001 "%TI works as documented; previously, it rejected some documented forms. (GTM-8686)

29

More Information

Additional information for GTM-6838 - Asynchronous database 10

Released as field test grade functionality in a production release, asynchronous IO is an option for database segments using the BG access
method; previously GT.M performed only synchronous I/O through the file system cache.

* $$"%PEEKBYNAME("sgmnt_data.asyncio",<region-name>) - returns TRUE (1) if the region has asynchronous I/O enabled and FALSE
(0) if it does not.

* $$"%PEEKBYNAME("node_local.wes_wip_lvl",<region-name>) - returns the number of blocks for which GT.M has issued writes that
it has not yet recognized as complete.

DSE DUMP -FILEHEADER reports the above information for a region as follows:

* Async IO - whether AsynclO is ON or OFF for the database

* WIP queue cache blocks - the number of blocks for which GT.M has issued writes that it has not yet recognized as complete
GDE ADD, CHANGE and TEMPLATE commands accept the following qualifier for SEGMENT objects with an access method of BG:
* -[NOJASYNCIO specifies whether to use asynchronous I/O for a database file; the default is NOASYNCIO.

MUPIP SET recognizes the -[NOJASYNCIO qualifier. As there are two MUPIP SET qualifiers beginning with "A", MUPIP no longer
recognizes "-A" to specify "-ACCESS_METHOD" - please use the recommended minimum of four characters (-ACCE). Also, when a MUPIP
SET command changes the database access method, it reports the change; previously it made the change silently.

Database files have an empty database block logically after the last usable database block; previously this location had an empty 512 byte
block. Because of this change, downgrading a database using V6.3-001 or later for use by a version prior to V6.3-001 requires a MUPIP
DOWNGRADE -VERSION=V63000A. This syntax uses V63000A to specify DOWNGRADE change the terminating block from having the
current size of a database block to using a 512-byte size used by all releases up to V6.3-000A, and should be used regardless of which release
older than V6.3-001 you plan to use after the DOWNGRADE.

For Linux x86_64, the gtm_aio_nr_events environment variable controls the number of structures a process has per global directory to
manage asynchronous writes, and therefore determines the number of concurrent writes a process can manage across all regions within

a global directory. If not specified, the value controlled by gtm_aio_nr_events defaults to 128. If a process encounters a situation where

it needs to perform an asynchronous write, but has no available slots with which to manage an additional one, it either falls back to
synchronous writing if the write is blocking other actions, and otherwise defers the write until a slot becomes available as other writes
complete. Linux allocates the structures on a system-wide basis with the setting of /proc/sys/fs/aio-max-nr. Therefore you should configure
this parameter to account for the needs (as determined by gtm_aio_nr_events or the default) of all processes using asynchronous I/O. When
processes use multiple global directories with asynchronous I/O, their need for the system resources increases accordingly. For example,

if an environment runs 10,000 processes each of which open two global directories and /proc/sys/fs/aio-max-nr is set to a value of 200,000
then gtm_aio_nr_events needs to be set to a value <= 200,000 / (10,000 * 2) = 10. Conversely if gtm_aio_nr_events is set to a value of 20,
then aio-max-nr needs to be bumped up to (10,000 * 2 * 20) = 400,000. GT.M captures the number of errors encountered when attempting to
write database blocks for a region, and, barring problems with the storage subsystem, hitting an asynchronous write limit would constitute
primary (probably only) contribution to that value, which you can access with the following:

* $$"%PEEKBYNAME("sgmnt_data.wcs_wterror_invoked_cntr",<region>)

The performance characteristics of asynchronous IO are likely to be quite different from the traditional sequential I0. Although
asynchronous IO in theory should be more efficient than synchronous IO by eliminating the need for the UNIX file buffer cache and
eliminating certain filesystem locks, in practice asynchronous IO is likely to emerge from the starting gate under-performing synchronous
IO because of the years that synchronous IO has been the common IO model operating systems and filesystems have had used by
applications. So, you should anticipate extensive benchmarking and tuning for your application to achieve the best performance it can with
asynchronous IO. Some notes and observations that we have to share:

30

More Information

As asynchronous IO dispenses with the UNIX file buffer cache, GT.M global buffers are the sole caching mechanism. To make
asynchronous IO perform well, you will likely need to increase the number of global buffers considerably. With GT.M's limit of 2GiB per
shared memory segment, a database segment with 4KiB blocks has a limit of almost two million global buffers.

A large number of global buffers potentially implies a large number of dirty global buffers to be flushed at an epoch. You

should investigate the impact on application response time of GT.M epoch tapering vs. turning off epoch tapering and using

a separate stand-alone process that executes a line of code such as: for set x="" for set x=$view("gvnext",x) quit:""=x view
"dbflush":x,"dbsync":x,"epoch":x hang n where n is a number that causes each region to be flushed at an appropriate interval. If you
choose this option, remember to turn off epoch tapering, and to set the epoch interval in the file header to be large enough to prevent
application processes from performing epochs, and consider scripted timely switching of journal files by other than application processes
(switching journal files involves an epoch).

"

On AIX, consider mounting file systems with the CIO mount option. The CIO mount option drops support for the file buffer cache
(unused by asynchronous IO), and also eliminates a lock that is a potential bottleneck to GT.M performance on the AIX jfs2 filesystem.

Limited experience with solid-state storage (SSDs) on Linux in the GT.M development environment suggests a considerable difference in
asynchronous IO performance on the same underlying hardware, with f2fs performing better than xfs, which in turn performed better
than ext4.

On Linux, which does not have a mount option such as AIX's CIO, even when GT.M uses asynchronous IO, a command like cp (used
under the covers by MUPIP BACKUP) can still use synchronous I0. Owing to what we expect is a race condition between the two IO
models, MUPIP BACKUP -DATABASE on Linux has in our testing on rare occasions created backups with database errors in them. The
errors were observed most often with an ext4 filesystem, less frequently on xfs, and never on f2fs; however, we must treat it as if all
filesystems are potentially vulnerable. FIS recommends using MUPIP BACKUP -BYTESTREAM if your application uses asynchronous IO.

In GT.M development, we have not benchmarked asynchronous IO on the types of storage commonly used for enterprise scale applications
(as workloads vary widely, we do not routinely benchmark workloads in development). Please consider the above observations in this light.

Additional information for GTM-6699 - Monitoring of shared database statistics

GT.M provides a fast and efficient mechanism for processes to share their database access statistics for other processes to monitor. Processes
opt in or out with the VIEW "[NO]STATSHARE" command, defaulting to VIEW "NOSTATSHARE". At process startup, a value of 1, or any
case-independent string or leading substrings of "TRUE" or "YES" in the environment variable gtm_statshare provides an initial setting of
VIEW "STATSHARE". When a process changes whether it is opting in or out, there is no change to the output of a ZSHOW "G" within that
process. GT.M does not permit this keyword of the VIEW command within a TP transaction. Monitoring the statistics of other processes
does not require a process to opt-in to sharing its own statistics.

Processes that have opted-in share their statistics as binary data in database files located in the directory specified by the gtm_statsdir
environment variable. If you do not explicitly define this environment variable for a process, GT.M defines this to the evaluation of
$gtm_tmp, which defaults to /tmp. All processes that share statistics MUST use the same value for $gtm_statsdir. FIS suggests that you point
gtm_statsdir at a tmpfs or ramfs on Linux, and a filesystem on a ram disk on AIX. These database files have a name derived from the user
defined database file name and a .gst extension. They are not usable as normal database files by application code, except to read statistics.
GT.M automatically creates and deletes them as needed. Under normal operation, applications do not need to manage them explicitly. The
mapping of *%YGS to statistics database files is managed by GT.M within global directories, transparently to applications. As described
below, the "%YGBLSTAT utility program gathers and reports statistics from nodes of *%YGS(region,pid).

Labels in the *"%YGBLSTAT utility program gather and report statistics, presenting both a high level API and a low level API. While we
intend to preserve backward compatibility of the high level API in future GT.M releases, we may change the low level API if and when

we change the underlying implementation. A call to a label in *%YGBLSTAT does not in any way slow the execution of other processes.
Because the gathering of statistics is not instantaneous, and processes concurrently open database files as well as close them on exit, and
may turn their participation in statistics monitoring on and off, statistics typically do not show a single moment in time, as statistics change
during the short time interval over which they are gathered.

wikn

In the following, an omitted response or argument is equivalent to "*".

The high level API implemented by $$STAT"%YGBLSTAT(expr1[,expr2[,expr3[,expr4]]]) reports global variable statistics and has
arguments as follows:

31

More Information

* exprl (treated as an intexpr - coercing an expr to an integer is equivalent to +(expr)) specifies the PID of a process on which to report; if
such a process does not exist, has not opted in, or no database file mapped by expr3 and expr4 includes statistics for such a process, the
function returns an empty string. Specifying "*" as the value of expr1 returns the aggregate statistic(s) specified by expr2 for all processes
whose statistics are included in the database file(s) of the region(s) specified by expr4 within the global directory specified by expr3, or the
empty string if there are no statistics to report for any process.

expr2 specifies the statistic(s) to report as follows:

*

If expr2 is a single statistic, e.g., "LKF", the function returns the requested value as an integer

If expr2 is a series of comma-separated names of statistics, e.g., "DTA,GET", the function returns a string with each requested statistic
in ZSHOW "G" order, e.g., "GET:3289,DTA:598...", rather than in the order in which they appear within the specifying argument.

nkn

If expr2 is omitted, or consists of the string "*", the return value reports all statistics formatted like the ZSHOW "G" statistics for a single
region, e.g., "SET:563,KIL:39,GET:3289,DTA:598...

expr3 specifies a global directory file name (producing a ZGBLDIRACC error if such a global directory is not accessible); if unspecified,
the utility defaults this value to $ZGBLDIR of the invoking process.

expr4 specifies the name of a region (producing a NOREGION error if no such region exists in the global directory expr3); if expr4 is
unspecified, or the string "*", the function returns statistics for the process or processes summed across all regions of the global directory
explicitly or implicitly specified by expr3.

When invoked as an interactive utility program using DO, *%YGBLSTAT, prompts for:

*

the process id (respond * for all processes)

* a comma separated list of the statistics desired (respond * for all statistics)

*

the global directory to use
* region (respond * to report statistics summed across all regions).

When invoked from a shell, the command line is: mumps -run %YGBLSTAT [--help] [-—pid pidlist] [--reg reglist] [-—stat statlist] where:

* "k

pidlist is a single pid, or "*" (quoted to protect it from expansion by the shell) for all processes currently sharing statistics.

wikn

reglist is a single region name in the global directory specified by $gtmgbldir, or "*" to report statistics summed across all regions

nkn

statlist is one or more comma separated statistics, or

When statlist specifies a list of statistics, %YGBLSTAT reports them in the same order in which ZSHOW "G" reports those statistics, rather
than in the order in which they appear within the specifying argument.

$$ORDERPID"%YGBLSTAT(expr1[,expr2[,expr3]]) reports PIDs of processes that have opted in and recorded statistics. Its arguments are as
follows:

* exprl coerced to an intexpr specifies a PID such that the function returns the next PID after expr1 of a process that has opted in to be
monitored and which has recorded statistics in any region(s) specified by expr3 from the global directory specified by expr2, or the empty
string if exprl is the last PID. A value of the empty string ("") for expr1 returns the first monitored PID meeting the specifications in expr2
and expr3.

expr2 specifies a global directory file name (producing a ZGBLDIRACC error if such a global directory is not accessible); if unspecified or
the empty string, the utility defaults this value to the $ZGBLDIR of the invoking process.

expr3 evaluates to the name of a region (producing a NOREGION error if no such region exists in the global directory specified by expr2);
if expr3 is unspecified, or the string "*", the function returns the PID for the next process after expr1 for any region of the global directory
specified by expr2.

32

More Information

* Applications should not rely on GT.M returning the PIDs in a sorted or other predictable order: the order in which PIDs are returned is at
the discretion of the implementation, and may change from release to release.

The low level API implemented by $$SHOW *%YGBLSTAT(glvn[,strexp]) reports raw statistics of a process and has arguments as follows:

*

glvn specifies a node containing raw statistics for a process
the raw data is stored in uniquely managed database files as nodes of *%YGS(expr1,expr2) where:

* exprl evaluates to the name of a region in the current global directory (or the global directory of an extended reference), producing an
UNDEF error, or, in NOUNDEF mode, an empty string, if no such region exists

* expr2 coerced to an intexpr is a PID.
* The data in the node is a series of binary bytes which are the raw statistics shared by a process
strexp specifies statistics to report with the same interpretation as the expr2 parameter of $$STAT"%YGBLSTAT.

$$SHOW " %YGBLSTAT() reports a zero value for any statistic whose name is unrecognized. This facilitates application code written for a
version of GT.M that includes a statistic, but which also needs to run on an earlier version without that statistic.

Because a process sharing statistics can exit or turn off sharing, deleting its node, between the time a monitoring process decides to access
its statistics, e.g., finding it using $$ORDERPID"%YGBLSTAT() or $ORDER(*%YGS()), and the time the monitoring process performs the
database access, any direct access to *%YGBLSTAT should be wrapped in $GET().

As raw statistics are binary data, processes in UTF-8 mode that gather and monitor statistics should use code with appropriate BADCHAR
handling. Note that processes sharing statistics and processes gathering statistics for monitoring and reporting need not run in the same
UTF-8/M mode. As statistics sharing by processes is identical in M and UTF-8 modes, FIS suggests that processes gathering statistics run
in M mode

Except as documented here for sharing and gathering statistics, FIS strongly recommends that applications not access statistics database files
unless otherwise directed by your GT.M support channel.

As they do for unshared statistics, shared statistics reflect all database actions for a TP transaction, including those during RESTARTS.
Because the sharing of statistics is not a database operation that modifies the relative time stamps GT.M uses to maintain serialized
operation preserving the Consistency and Isolation aspects of ACID operation, statistics generated by a sharing process inside a transaction
(TSTART/TCOMMIT) do not cause transaction restarts as a consequence of updates to shared statistics by other processes.

DSE DUMP -FILEHEADER reports the following information for a region:
* DB is auto-created TRUE or FALSE to indicate whether the database file is automatically created
* DB shares gvstats TRUE or FALSE to indicate whether the database supports sharing of statistics

By default, DSE does not map the regions used to store shared GVSTAT information, however the -STATS qualifier on a FIND -
REGION=<region-name> command directs DSE to any existing statistics database associated with the named region. Note that these special
purpose regions have a lower-case name that corresponds to their actual upper-case region name, and their databases tend not to exist
unless they are in current use.

GDE, ADD. CHANGE and TEMPLATE commands accept the following qualifiers for REGION objects:

*

-[NOJAUTODRB specifies whether GT.M should automatically create the associated database file if it does not exist when a process first
attempts to access it; it defaults to NOAUTODB. This feature is not intended to replace MUPIP CREATE, but rather permit somewhat
easier management of temporary databases or process private databases.

* -[NO]STATS specifies whether GT.M should permit statistics sharing for this region; it defaults to STATS. This characteristic permits
operational exclusion of statistics sharing for a region.

Any attempt to map globals with names starting with %Y produces a NOPERCENTY error, as this namespace is reserved by the standard for
implementation use.

33

More Information

MUPIP commands with the exception of INTEG, SET and RUNDOWN do not apply to statistic databases; that is they are not available for
operations such as BACKUP, EXTRACT or LOAD.

*

INTEG recognizes the -STATS qualifier which directs it to integrity check any active statistics database associated with the region(s)
specified for the command.

RUNDOWN -FILE can be directed to a statistics database file and works even if the corresponding actual database file does not exist.
MUPIP RUNDOWN with no argument removes any statistics database file resources associated with actual database file resources it can

remove.

SET recognizes the -[NO]STATS qualifier. Please refer to the GDE description above for a description of these database characteristics.

34

Error and Other Messages

CHANGELOGINTERVAL ©

CHANGELOGINTERVAL, ssss Server now logging to ffff with a IIIl second interval
MUPIP Information: This message confirms a change to a replication server (ssss) by showing the current log file (ffff) and log interval (IIII)

Action: None Required

CRYPTNOMM A

CRYPTNOMM, ffffis an encrypted database. Cannot support MM access method.

MUPIP Error: This error is triggered by an attempt to mark an MM database as encrypted with GDE or to switch an encrypted database from
BG to MM with MUPIP SET. The MM access method is not supported for encrypted databases.

Action: Use the BG access method for encrypted files.

DBDUPNULCOL ©

DBDUPNULCOL, Discarding kkkk=vvvv key due to duplicate null collation record

MUPIP Error: This idicates that MUPIP LOAD discarded a key-value pair from a binary EXTRACT because it contained conflicting empty
string subscripts. This can only happen is someone changes the "Null" subscript representation used by a database while it contains such
subscripts. FIS recommends against such a change.

Action: Determine whether the described data has value and restore it, typically with a SET command, appropriately.

DBMISALIGN A

DBMISALIGN, Database file xxxx has yyyy blocks which does not match alignment rules. Reconstruct the database from a backup or
extend it by at least zzzz blocks.

MUPIP Error: This is an auxiliary message, and is preceded by a primary message.

Action: Follow the primary message description and action as specified in this manual.

DBNULCOL ©

DBNULCOL, NULL collation representation for record rrrr in block bbbb is RRRR which differs from the database file header settings of
hhhh

DSE/MUPIP/Run Time Error: This indicates the database contains a record rrrr with an empty subscript ("Null" subscript) representation
RRRR in block bbbb that is incompatible with the current setting hhhh for such representation. This can only arise if someone changes the
setting for the database while it contains one or more such subscripts. FIS recommends against making such a change. This message can
originate from MUPIP INTEG, DSE INTEG or VIEW "GDSCERT"

Action: Use the record and block information to remove the problematic record with DSE and restore the data appropriately, typically with
a SET command. Note that the record and block of the record many change due to ongoing updates, so this operation requires great care and
familiarity with DSE.

35

Error and Other Messages

DBTOTBLK &

DBTOTBLK, File header indicates total blocks is tttt but file size indicates total blocks would be eeee
MUPIP Information: This is an auxiliary message, and is preceded by a primary message.

Action: Follow the primary message description and action as specified in this manual.

GDECRYPTNOMM A

GDECRYPTNOMM, ssss segment has encryption turned on. Cannot support MM access method

GDE Error: This error is triggered by an attempt to mark an MM database segment ssss as encrypted with GDE. The MM access method is
not supported for encrypted databases.

Action: Use the BG access method for encrypted files.

GDINVALID &

GDINVALID, Unrecognized Global Directory file format: ffff, expected label: eeee, found: bbbb

Run Time Error: This indicates that a version of the global directory file ffff does not match with the version expected by GT.M. The file
might have been created by an incompatible GT.M version. If the text of eeee or bbbb contain non-graphic characters, GT.M replaces each of
them with a period (.).

Action: Compare the labels eeee and bbbb. If the global directory was created by an earlier GT.M version, upgrade the file by loading and
then saving the file using the GDE of the new GT.M version.

INVADDRSPEC A

INVADDRSPEC, Invalid IP address specification
Run Time Error: This indicates the IP address and/or port specified is not in a valid format.

Action: Verify and correct the IP address and port.

INVLINKTMPDIR &

INVLINKTMPDIR, Value for $gtm_linktmpdir is either not found or not a directory: dddd

Run Time Error: Indicates the process cannot access directory dddd, which it needs in order to do auto-relink as specified by its
$ZROUTINES; the directory may not exist as a directory or the process lacks authorization to the directory.

Action: The directory specification comes from $gtm_linktmpdir if it is defined, otherwise from $gtm_tmp if that is defined; otherwise it
defaults to the system temporary directory, typically /tmp. Either correct the environment variable definition or ensure directory dddd is
appropriately set up. Note that all users of auto-relink for a directory normally need to use the same temporary directory for their relink
control files.

INVMEMRESRYV A

INVMEMRESRYV, Could not allocate GT.M memory reserve (xxxx)

36

Error and Other Messages

Images Warning: GT.M could not allocate xxxx KiB of reserve memory for handling and reporting out-of-memory conditions. Examine the
subsequent messages for more information on why the memory reserve allocation failed.

Action: If $gtm_memory_reserve is too high, specify a lower value and retry. If the value is reasonable, determine what else is preventing
the allocation (process or system limits or usage by other system components). Note that GT.M uses this reserve only when a process runs
out of memory so it mostly requires address space and almost never requires actual memory.

IOEOF A

IOEOF, Attempt to read past an end-of-file

Run Time/MUPIP Error: This indicates that a READ command for a run-time system or a MUPIP command attempted to move past an end-
of-file.

Action: Verify that the $ZEOF special variable is tested by the function betwee READs or that an EXCEPTION code string is assigned
to handle EOFs. Alternatively, have your $ETRAP (or $ZTRAP) error handling deal with this error. The USE command has a REWIND
deviceparameter that allows you to read from the beginning of the file without having to CLOSE and OPEN again, which may facilitate
recovery from this error. Attempting to READ from a non-existent file not opened READONLY also causes this error. In the event of a
MUPIP error, make sure the file being read is not corrupted.

JOBLVN2LONG A

JOBLVN2LONG, The zwrite representation of a local variable transferred to a JOB'd process is too long. The zwrite representation cannot
exceed MMMM. Encountered size: LLLL

Run Time Error: This error indicates that the total length LLLL (in bytes) of the ZWRITE representation of the variable name, subscripts,
and value exceeds the maximum MMMM supported by the PASSCURLVN facility. Note that the ZWRITE representation contains the
appropriate punctuation for any subscripts, the equal-sign and replaces any non-graphic characters with their ${Z]CHAR() representations.

Action: Consider whether the JOB'd process needs the variable(s) that exceed the maximum for PASSCURLVN - if not, they can be taken out
of scope before the JOB command. Alternatively, pass them using global variables or a local SOCKET device.

JOBLVNDETAIL A
Last used version: V6.2-003

JOBLVNDETAIL, The zwrite representation of a local variable transferred to a JOB'd process is too long. The zwrite representation cannot
exceed XXXX. Encountered size: YYYY

Run Time Error: The length of the zwrite representation of a local, (including the quotes, the '=', concatenate operator "_", and "${Z]C()") has
the length of YYYY which exceeds the maximum limit of XXXX.

Action: Please check the sizes of locals that needs to be sent and make sure their lengths are less than XXXX. For those big locals, consider
using another mechanism such as sockets.

MUPJNLINTERRUPT A

MUPJNLINTERRUPT, Database file xxxx indicates interrupted MUPIP JOURNAL command. Restore from backup for forward recover/
rollback.

MUPIP Error: This indicates that a MUPIP JOURNAL -ROLLBACK -FORWARD or a MUPIP JOURNAL -RECOVER -FORWARD did not
proceed because a previous MUPIP JOURNAL command attempted on the database was terminated abnormally.

Action: Restore the database and journal files from a backup to proceed with the MUPIP JOURNAL -ROLLBACK -FORWARD or MUPIP
JOURNAL -RECOVER -FORWARD.

37

Error and Other Messages

NOPRINCIO A

NOPRINCIO, NOPRINCIO Unable to write to principal device

Run Time Fatal: This indicates that GT.M attempted to, but could not, READ from, or WRITE to, the principal device and therefore
attempted to issue an appropriate error, for example, an IOEOF. However if the error handling does not prevent any and all subsequent
READs and WRITEs to the no longer available principal device, the next subsequent I/O error shuts down the process immediately with a
NOPRINCIO to prevent mysteriously lost output, or, worse, an indefinite loop.

Action: The NOPRINCIO error message is FATAL which does not drive device or trap handlers and terminates the process. This termination
does not allow any application level orderly shutdown and, depending on the application may lead to out-of-design application state.
Therefore FIS recommends appropriate application level error handling that recognizes the preceding error and performs an orderly
shutdown without issuing any additional READ or WRITE to the principal device. The most common causes for the principal device to cease
to exist involve terminal sessions or socket connections (including those from processes started by inetd/xinetd). When the remote client
terminates the connection, the underlying principal device becomes inaccessible making any subsequent attempt to READ from, or WRITE
to, it hopeless. In the case of terminals, a user closing the window of a session without cleanly exiting from the GT.M process sets up the
case that can drive this error.

NOTALLJNLEN &
NOTALLJNLEN, Journaling disabled/off for dddd regions
MUPIP Warning: This indicates that some or all regions do not have journal state ON.

Action: Ensure you have journaling enabled for all regions that require it; use MUPIP SET to enable journaling.

NOTALLREPLON A

NOTALLREPLON, Replication off for dddd regions
MUPIP Warning: This indicates that some or all regions have replication state OFF.

Action: Ensure you have replication on for all regions that require it; use MUPIP SET to enable replication.

OFRZACTIVE ©

OFRZACTIVE, Region aaaa has an Online Freeze

MUPIP Warning: A MUPIP operation has been requested while an Online Freeze is in place, but the operation can not be performed with an
Online Freeze.

Action: The operation was not performed. Remove the freeze with MUPIP FREEZE -OFF and retry the operation.

OFRZAUTOREL ©

OFRZAUTOREL, Online Freeze automatically released for region aaaa

Operator log Warning: A process needed to modify the database file for region aaaa, which had an Online Freeze, but with AutoRelease
selected. The process continued normally, modifying the file.

Action: Discard any database copy or snapshot made after the Online Freeze, as its contents are suspect. Perform a MUPIP FREEZE -

OFF to clean up the prior Online Freeze. If the AutoRelease behavior is not desired, try again with MUPIP FREEZE -ON -ONLINE -
NOAUTORELEASE. If the cause of the AutoRelease is unclear, report this and the accompanying ERRCALL message to your GT.M support
channel.

38

Error and Other Messages

OFRZCRITREL ©
OFRZCRITREL, Proceeding with a write to region aaaa after Online Freeze while holding crit
Operator log Warning: A process previously encountered a OFRZCRITSTUCK condition, which has since been resolved.

Action: None.

OFRZCRITSTUCK ©

OFRZCRITSTUCK, Unable to proceed with a write to region !AD with Online Freeze while holding crit. Region stuck until freeze is
removed.

Operator log Warning: A process needed to do a database write while holding a critical resource, but an Online Freeze was in place without
AutoRelease enabled. No other process will be able to acquire the critical resource until the Online Freeze is removed.

Action: MUPIP FREEZE -OFF will remove the freeze and allow the process to continue, at which time it will send a OFRZCRITREL message
to the operator log. This situation can be avoided by specifying MUPIP FREEZE -ON -ONLINE without the -NOAUTORELEASE option, or by
including the -AUTORELEASE option.

OFRZNOTHELD ©

OFRZNOTHELD, Online Freeze had been automatically released for at least one region

MUPIP Warning: A MUPIP FREEZE -OFF command encountered at least one region which previously had an Online Freeze, but a process
had AutoReleased it.

Action: The command cleaned up the region with the AutoReleased Online Freeze, and database operations are back to normal. However,
any database file snapshots or copies made after the Online Freeze should be discarded, as processes likely will have written to the file since
the AutoRelease. An OFRZAUTOREL message in the operator log will report which process performed the AutoRelease.

RECLOAD A

RECLOAD, Error loading record number: nnnn

MUPIP Error: This message identifies a record nnnn that MUPIP could not LOAD and follows a message about the cause. If this message is
Fatal, which it can be for BIN format, it produces a core file for diagnostic analysis.

Action: Address the cause or, for GO and ZWR format input files, examine the record with a text editor for possible correction or alternate
action and for BIN format if fixing the cause does not resolve the error switch to ZWR format EXTRACT.

REPLLOGOPN &

REPLLOGOPN, Replication subsystem could not open log file LLLL : eeee. Logging done to OOOO

MUPIP Error: This indicates that MUPIP could not find, or did not have access permission to open, the log file LLLL, because of the error
eeee. If there is another log file available (a previously opened file), MUPIP writes to the other log file OOOO. If there is no other log file
available, MUPIP sends any remaining messages to /dev/null and terminates the replication server process.

Action: Check the log file permissions, and if permissions are correct, move the log file and specify that MUPIP should log to a log file which
has appropriate access permissions.

REPLSTATEOFF &

REPLSTATEOFF, MUPIP JOURNAL -ROLLBACK -BACKWARD cannot proceed as database xxxx does not have replication ON

39

Error and Other Messages

MUPIP Error: This indicates that a MUPIP JOURNAL -ROLLBACK -BACKWARD command cannot proceed because the specified database
xxxx does not have replication state ON. In most situations, this error occurs when the journal file storage runs out of disk space.

Action: Ensure replication is turned ON for a database, before executing the MUPIP JOURNAL -ROLLBACK -BACKWARD command. If
the database is in the WAS_ON state, refer to the "Recovering from the WAS_ON state" section in the Database Replication chapter of the
Administration and Operations Guide. Alternatively, if replication was not in use on the database, use MUPIP JOURNAL -RECOVER.

REQROLLBACK A

REQROLLBACK, Error accessing database dddd. Run MUPIP JOURNAL -ROLLBACK -NOONLINE on cluster node cccc.

Run Time Error: This indicates that GT.M could not open a previously replicated database file dddd due to a prior improper shutdown on
cluster node cccc. A GT.M process on cluster node ccccc may have failed to attach a database memory segment or it was terminated by a
method other than MUPIP STOP.

Action: Perform MUPIP JOURNAL -ROLLBACK -NOONLINE to cleanup the instance file, database, and journal files before starting a source
server on this instance.

RESRCINTRLCKBYPAS A

RESRCINTRLCKBYPAS, tttt with PID qqqq bypassing the ssss semaphore for region rrrr (ffff) currently held by PID pppp.

All GT.M Components Information: GT.M issues the RESRCINTRLCKBYPAS message to the system log as an indication it may not detect
when the last process detaches from the shared resource and therefore may not rundown the database shared resources as it normally
would. GT.M protects the actions of setting up and tearing down the shared resources associated with a database with a pair of semaphores.
Because DSE, and LKE are tools for diagnosing issues, when they start and find they cannot acquire the semaphores after a reasonable
number of tries, they proceed to open the database anyway because it is highly probable the database is already set up. When DSE and LKE
bypass the semaphore acquisition, they leave the count of attached processes incorrect. When many processes terminate at the same time,
typically because of a system shutdown, there can be significant contention for the semaphores that can cause their terminations to take an
unusually long time. When this happens, and the count of remaining attached processes is significant, a process may skip the semaphore
acquisition, again leaving the count of attached process incorrect. If either of these events occurs, GT.M issues the RESRCINTRLCKBYPAS
message where tttt identifies the process type: "LKE", "DSE" or "GT.M"; qqqq is the bypassing process's PID; ssss identifies the semaphore
type: "FTOK" or "access control"; rrrr is the region bypassed; ffff is the file corresponding to region rrrr; pppp is the PID of the process
holding the semaphore.

Action: These messages when shutting down GT.M activity may indicate a need to complete the process by invoking a MUPIP JOURNAL -
ROLLBACK -BACKWARD for replicated databases, a MUPIP JOURNAL -RECOVER -BACKWARD for unreplicated journaled databases and
a MUPIP RUNDOWN for journal-free databases to get the database to a safe state; doing so as part of every shutdown is good practice.

RESRCWAIT &

RESRCWAIT, Waiting briefly for the tttt semaphore for region rrrr (fftf) was held by PID pppp (Sem. ID: ssss)
Run Time Information: A process started a three (3) second wait for an FTOK or access control semaphore. If process with PID pppp does
not release the semaphore before the timeout expires, the waiting process bypasses acquiring the semaphore. tttt identifies the semaphore

type: "FTOK" or "access control"; rrrr is the region; ffff is the database file corresponding to region rrrr; ssss is the semaphore ID.

Action: None required.

TPRESTART A

TPRESTART, Database mmmm; code: xxxx; blk: yyyy in glbl: zzzz; pvtmods: aaaa, blkmods: bbbb, blklvl: cccc, type: dddd, readset: eeee,
writeset: ftff, local_tn: gggg, zpos: hhhh

40

Error and Other Messages

Run Time Information: The UNIX environment variables GTM_TPRESTART LOG_FIRST and GTM_TPRESTART LOG_DELTA

control the logging of TPRESTART messages. GTM_TPRESTART_LOG_FIRST indicates the number of TP restarts to log from a GT.M
invocation. Once that many have been logged, every GTM_TPRESTART_LOG_DELTA TP restarts, GT.M logs a restart message. If
GTM_TPRESTART_LOG_DELTA is undefined, GT.M performs no operator logging. The default value for GTM_TPRESTART_LOG_FIRST
is 0 (zero), which leaves the control completely with GTM_TPRESTART_LOG_DELTA. The facility that produces this message can serve

as a diagnostic tool in developmental environments for investigating contention due to global updates. A zzzz of ""BITMAP" indicates
contention in block allocation which might involve multiple globals. hhhh is the $ZPOSITION of the line of M code that caused the restart of
the transaction; utilities leave this field blank.

Action: Disable, or adjust the frequency of, these messages with the mechanism described above. To reduce the number of restarts, consider
changes to the global structure, or varying the time when work is scheduled. Consider whether the business and program logic permits the
use of NOISOLATION.

TRIGINVCHSET A

TRIGINVCHSET, Trigger tttt for global gggg was created with CHSET=cccc which is different from the current $ZCHSET of this process

Trigger/Run Time Error: TRIGINVCHSET occurs when a process invokes a trigger on a global using a $ZCHSET that is different from the
$ZCHSET used at the time of loading the first trigger on that global. GT.M implicitly uses the $ZCHSET of the first trigger on a global to
invoke all triggers on that global. Note that tttt is the name of the first trigger on the global gggg-not necessarily the name of the trigger
being invoked. cccc is the $ZCHSET of the process at the time of loading tttt on global gggg.

Action: Ensure that the process invoking a trigger on a global uses the same $ZCHSET that was used to load the first trigger on that global.
If your application requires triggers in both M and UTF-8 modes, use different globals to load M mode and UTF-8 mode triggers.

ZATRANSERR ©

ZATRANSERR, The input string is too long to convert
Run Time Error: The first (expression) argument to a $ZATRANSFORM() produces a result that exceeds the maximum key length.

Action: Analyze the logic to determine if the argument is correct. If you need to produce translations that exceed the maximum key length,
you must use $ZCOLLATE() or break them into chunks to avoid this error, Note that some transforms may use context such that selecting
the chunks requires an understanding of the transform.

41

	
	Table of Contents
	V6.3-001A
	Overview
	Conventions
	Platforms
	Platform support lifecycle

	32- vs. 64-bit platforms
	Call-ins and External Calls
	Internationalization (Collation)
	Environment Translation

	Recompile
	Rebuild Shared Libraries or Images
	Additional Installation Instructions
	
	Compiling the Reference Implementation Plugin

	Upgrading to GT.M V6.3-001A
	Stage 1: Global Directory Upgrade
	Stage 2: Database Files Upgrade
	Database Compatibility Notes

	Stage 3: Replication Instance File Upgrade
	Stage 4: Journal Files Upgrade
	Stage 5: Trigger Definitions Upgrade
	Downgrading to V5 or V4

	Managing M mode and UTF-8 mode
	Setting the environment variable TERM
	Installing Compression Libraries

	Change History
	V6.3-001A
	V6.3-001

	Database
	Language
	System Administration
	Other
	More Information
	Additional information for GTM-6838 - Asynchronous database IO
	Additional information for GTM-6699 - Monitoring of shared database statistics

	Error and Other Messages
	CHANGELOGINTERVAL
	CRYPTNOMM
	DBDUPNULCOL
	DBMISALIGN
	DBNULCOL
	DBTOTBLK
	GDECRYPTNOMM
	GDINVALID
	INVADDRSPEC
	INVLINKTMPDIR
	INVMEMRESRV
	IOEOF
	JOBLVN2LONG
	JOBLVNDETAIL
	MUPJNLINTERRUPT
	NOPRINCIO
	NOTALLJNLEN
	NOTALLREPLON
	OFRZACTIVE
	OFRZAUTOREL
	OFRZCRITREL
	OFRZCRITSTUCK
	OFRZNOTHELD
	RECLOAD
	REPLLOGOPN
	REPLSTATEOFF
	REQROLLBACK
	RESRCINTRLCKBYPAS
	RESRCWAIT
	TPRESTART
	TRIGINVCHSET
	ZATRANSERR

