
GT.M
Release Notes
V6.3-001

FIS
Page 2, March 11, 2020 FIS

Contact Information

GT.M Group
Fidelity National Information Services, Inc.
200 Campus Drive
Collegeville, PA 19426
United States of America

GT.M Support for customers: gtmsupport@fisglobal.com
Automated attendant for 24 hour support: +1 (484) 302-3248
Switchboard: +1 (484) 302-3160
Website: http://fis-gtm.com

Legal Notice

Copyright ©2017, 2019-2020 Fidelity National Information Services, Inc. and/or its subsidiaries. All Rights Reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts and no Back-Cover Texts.

GT.M™ is a trademark of Fidelity National Information Services, Inc. Other trademarks are the property of their respective
owners.

This document contains a description of GT.M and the operating instructions pertaining to the various functions that
comprise the system. This document does not contain any commitment of FIS. FIS believes the information in this publication
is accurate as of its publication date; such information is subject to change without notice. FIS is not responsible for any errors
or defects.

Revision History

Revision 1.4 11 March 2020 Add GTM-8547.

Revision 1.3 5 February 2019 Updated the Platforms section to add
AIX 7.1 TL 4 and AIX 7.2 as supported
versions; Correct the maximum V6
database size.

Revision 1.2 25 September 2017 Correct the description of GTM-8362
and add GTM-8632.

Revision 1.1 06 April 2017 V6.3-001A

Revision 1.0 15 March 2017 V6.3-001 - First published version

http://fis-gtm.com
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt

GT.M V6.3-001
FIS

March 11, 2020, Page iii

Table of Contents
V6.3-001A ... 1

Overview .. 1
Conventions ... 2
Platforms .. 3

Platform support lifecycle ... 6
32- vs. 64-bit platforms ... 6

Call-ins and External Calls .. 7
Internationalization (Collation) .. 7
Environment Translation ... 7

Recompile ... 8
Rebuild Shared Libraries or Images .. 8
Additional Installation Instructions .. 8

.. 8
Upgrading to GT.M V6.3-001A ... 10

Stage 1: Global Directory Upgrade ... 10
Stage 2: Database Files Upgrade ... 11
Stage 3: Replication Instance File Upgrade .. 13
Stage 4: Journal Files Upgrade ... 14
Stage 5: Trigger Definitions Upgrade ... 14
Downgrading to V5 or V4 ... 15

Managing M mode and UTF-8 mode .. 16
Setting the environment variable TERM ... 17
Installing Compression Libraries .. 18

Change History ... 19
V6.3-001A ... 19
V6.3-001 .. 19

Database ... 25
Language .. 29
System Administration .. 33
Other .. 39
More Information .. 43

Additional information for GTM-6838 - Asynchronous database IO 43
Additional information for GTM-6699 - Monitoring of shared database statistics 45

Error and Other Messages ... 51
CHANGELOGINTERVAL .. 51
CRYPTNOMM .. 51
DBDUPNULCOL ... 51
DBMISALIGN ... 51
DBNULCOL ... 51
DBTOTBLK .. 52
GDECRYPTNOMM ... 52
GDINVALID ... 52
INVADDRSPEC .. 52

FIS
Page iv, March 11, 2020 FIS

INVLINKTMPDIR ... 53
INVMEMRESRV ... 53
IOEOF .. 53
JOBLVN2LONG .. 53
JOBLVNDETAIL ... 54
MUPJNLINTERRUPT .. 54
NOPRINCIO ... 54
NOTALLJNLEN .. 55
NOTALLREPLON ... 55
OFRZACTIVE ... 55
OFRZAUTOREL ... 55
OFRZCRITREL ... 56
OFRZCRITSTUCK .. 56
OFRZNOTHELD ... 56
RECLOAD .. 56
REPLLOGOPN .. 57
REPLSTATEOFF ... 57
REQROLLBACK ... 57
RESRCINTRLCKBYPAS .. 57
RESRCWAIT .. 58
TPRESTART ... 58
TRIGINVCHSET ... 59
ZATRANSERR .. 59

GT.M V6.3-001
FIS

March 11, 2020, Page 1

V6.3-001A

Overview

GT.M V6.3-001A provides timely remediation for a flaw introduced with GTM-8637 in V6.3-001. This
flaw was discovered during GT.M testing immediately after the release and was never reported by a
user. V6.3-001A also includes bug fixes and one enhancement and is suitable for production use. For
more information, refer to Change History - V6.3-001A.

V6.3-001 brings important and useful enhancements to GT.M.

GT.M provides a fast and efficient mechanism for processes to opt-in to share their database access
statistics for other processes to monitor. The statistics are the same as those available to the process
itself using the ZSHOW "G" command. With almost no impact on monitored processes, a monitoring
process can rapidly identify, for example, which processes are performing the most global SETs, or
which ones are encountering the most database access conflicts (GTM-6699).

MUPIP FREEZE -ONLINE freezes database writes from global buffers to the file system, while allowing
applications to continue database updates as long as they are able to, without requiring a write to the
database file system. During this time, journal writes continue, ensuring database recoverability. A
typical use is to freeze a file system to take a snapshot, or break a mirror, an operation which can take
seconds to over a minute. MUPIP FREEZE without the -ONLINE enhancement freezes database updates
by application processes (GTM-8362).

V6.3-001 includes multiple optimizations for performance, some applicable to all platforms, and others
specific to Linux on x86_64.

Introduced as field test grade functionality in a production release, asynchronous IO is an option for
databases using the BG access method. Unlike traditional database IO, which performs synchronous
IO through the file system cache, asynchronous IO bypasses the file system cache. The performance
characteristics of asynchronous IO are likely to be quite different from traditional sequential IO.
Although asynchronous IO in theory should be more efficient than synchronous IO by eliminating the
need for the UNIX file buffer cache and thereby eliminating certain file system locks (e.g., file systems
mounted with AIX's CIO mount option, in practice asynchronous IO is likely to emerge from the
starting gate under-performing synchronous IO because of the years that synchronous IO has been the
common IO model operating systems and file systems have had used by applications. Please anticipate
extensive benchmarking and tuning for your application to achieve the best performance it can with
asynchronous IO. (GTM-6838).

GT.M accepts routines with <CR><LF> line terminators. FIS thanks the participants of the 2016
"Hacking GT.M" workshop for this enhancement (GTM-4283).

As always, the release bring numerous smaller enhancements, and fixes. See the Change History below.

Please note that messages are not part of the GT.M API whose stability we strive to maintain. The
enhancements and fixes in this release bring more changes to messages, including in some cases the order of
messages, than a typical GT.M release does. Make sure that you review any automated scripting that parses
GT.M messages.

V6.3-001A Conventions

FIS
Page 2, March 11, 2020 FIS

Conventions

This document uses the following conventions:

Flag/Qualifiers -

Program Names or Functions upper case. For example, MUPIP BACKUP

Examples lower case. For example:
mupip backup -database ACN,HIST /backup

Reference Number A reference number is used to track software
enhancements and support requests.
It is enclosed between parentheses ().

Platform Identifier Where an item affects only specific platforms, the
platforms are listed in square brackets, e.g., [AIX]

Note

The term UNIX refers to the general sense of all platforms on which GT.M uses a
POSIX API. As of this date, this includes: AIX and GNU/Linux on x86 (32- and 64-
bits).

The following table summarizes the new and revised replication terminology and qualifiers.

Pre V5.5-000 terminology Pre V5.5-000
qualifier

Current terminology Current qualifiers

originating instance or primary
instance

-rootprimary originating instance or
originating primary instance.

Within the context of a
replication connection between
two instances, an originating
instance is referred to as
source instance or source side.
For example, in an B<-A->C
replication configuration, A is
the source instance for B and C.

-updok
(recommended)

-rootprimary (still
accepted)

replicating instance (or
secondary instance) and
propagating instance

N/A for replicating
instance or
secondary instance.

-propagateprimary
for propagating
instance

replicating instance.

Within the context of a
replication connection between
two instances, a replicating
instance that receives updates
from a source instance is
referred to as receiving instance
or receiver side. For example,

-updnotok

Platforms V6.3-001A

GTM V6.3-001
FIS

March 11, 2020, Page 3

Pre V5.5-000 terminology Pre V5.5-000
qualifier

Current terminology Current qualifiers

in an B<-A->C replication
configuration, both B and C can
be referred to as a receiving
instance.

N/A N/A supplementary instance.

For example, in an A->P->Q
replication configuration, P is
the supplementary instance.
Both A and P are originating
instances.

-updok

Effective V6.0-000, GT.M documentation adopted IEC standard Prefixes for binary multiples. This
document therefore uses prefixes Ki, Mi and Ti (e.g., 1MiB for 1,048,576 bytes). Over time, we'll update
all GT.M documentation to this standard.

 denotes a new feature that requires updating the manuals.

 denotes a new feature or an enhancement that may not be upward compatible and may affect an
existing application.

 denotes deprecated messages.

 denotes revised messages.

 denotes added messages.

Platforms

Over time, computing platforms evolve. Vendors obsolete hardware architectures. New versions
of operating systems replace old ones. We at FIS continually evaluate platforms and versions of
platforms that should be Supported for GT.M. In the table below, we document not only the ones that
are currently Supported for this release, but also alert you to our future plans given the evolution of
computing platforms. If you are an FIS customer, and these plans would cause you hardship, please
contact your FIS account executive promptly to discuss your needs.

Each GT.M release is extensively tested by FIS on a set of specific versions of operating systems on
specific hardware architectures (the combination of operating system and hardware architecture is
referred to as a platform). This set of specific versions is considered Supported. There may be other
versions of the same operating systems on which a GT.M release may not have been tested, but
on which the FIS GT.M Group knows of no reason why GT.M would not work. This larger set of
versions is considered Supportable. There is an even larger set of platforms on which GT.M may well
run satisfactorily, but where the FIS GT.M team lacks the knowledge to determine whether GT.M is
Supportable. These are considered Unsupported. Contact FIS GT.M Support with inquiries about your
preferred platform.

http://physics.nist.gov/cuu/Units/binary.html

V6.3-001A Platforms

FIS
Page 4, March 11, 2020 FIS

As of the publication date, FIS supports this release on the hardware and operating system versions
below. Contact FIS for a current list of Supported platforms. The reference implementation of the
encryption plugin has its own additional requirements, should you opt to use it as included with GT.M.

Platform Supported
Versions

Notes

IBM Power Systems AIX 6.1, 7.1 TL 4,
7.2

Only 64-bit versions of AIX with POWER6 as the minimum
required CPU architecture level are Supported.

While GT.M supports both UTF-8 mode and M mode on
this platform, there are problems with the AIX ICU utilities
that prevent FIS from testing 4-byte UTF-8 characters as
comprehensively on this platform as we do on others.

Running GT.M on AIX 7.1 requires APAR IZ87564, a fix for the
POW() function, to be applied. To verify that this fix has been
installed, execute instfix -ik IZ87564.

AIX 7.1 TL 5 is Supportable.

Only the AIX jfs2 filesystem is Supported. Other filesystems,
such as jfs1 are Supportable, but not Supported. FIS strongly
recommends use of the jfs2 filesystem on AIX; use jfs1 only for
existing databases not yet migrated to a jfs2 filesystem.

Effective May 1, 2017, FIS intends to require 7.1 as the
minimum level of AIX, and POWER7 as the minimum required
CPU architecture level.

x86_64 GNU/Linux Red Hat
Enterprise
Linux 6 and 7;
Ubuntu 14.04
LTS and 16.04
LTS

To run 64-bit GT.M processes requires both a 64-bit kernel as
well as 64-bit hardware.

GT.M should also run on recent releases of other major Linux
distributions with a contemporary Linux kernel (2.6.32 or
later), glibc (version 2.12 or later) and ncurses (version 5.7 or
later).

To install GT.M with Unicode (UTF-8) support on RHEL 6, in
response to the installation question Should an ICU version
other than the default be used? (y or n) please respond y
and then specify the ICU version (for example, respond 4.2) to
the subsequent prompt Enter ICU version (ICU version 3.6
or later required. Enter as major-ver.minor-ver):

GT.M requires the libtinfo library. If it is not already installed
on your system, and is available using the package manager,
install it using the package manager. If a libtinfo package is not
available:

* Find the directory where libncurses.so is installed on your
system.

Platforms V6.3-001A

GTM V6.3-001
FIS

March 11, 2020, Page 5

Platform Supported
Versions

Notes

* Change to that directory and make a symbolic link to
libncurses.so.<ver> from libtinfo.so.<ver>. Note that some of
the libncurses.so entries may themselves be symbolic links,
for example, libncurses.so.5 may itself be a symbolic link to
libncurses.so.5.9.

To support the optional WRITE /TLS fifth argument (the
ability to provide / override options in the tlsid section of the
encryption configuration file), the reference implementation
of the encryption plugin requires libconfig 1.4.x. As this is
a higher level than that distributed with Red Hat Enterprise
Linux 6, in order to use this feature of WRITE/TLS on that
platform with the reference implementation, please install
libconfig 1.4.x, including the header files, and recompile the
reference implementation of the encryption plugin.

Although GT.M itself does not require libelf, the geteuid
program used by the GT.M installation script requires libelf
(packaged as libelf1 on current Debian/Ubuntu distributions
and elfutils-libelf on RHEL 6 & 7).

A bug in the Linux 3.13 kernels used in Ubuntu 14.04
LTS (https://bugs.launchpad.net/ubuntu/+source/linux/
+bug/1502168) affects GT.M operation. As newer kernels
do not exhibit this misbehavior, FIS recommends that you
follow the Ubuntu LTS Enablement Stack procedure (https://
wiki.ubuntu.com/Kernel/LTSEnablementStack) and use newer
kernels to avoid the behavior until such time as the bug is
fixed in the 3.13 kernels.

Only the ext4 and xfs filesystems are Supported.
Other filesystems are Supportable, but not Supported.
Furthermore, if you use the NODEFER_ALLOCATE
feature, FIS strongly recommends that you use xfs.
If you must use NODEFER_ALLOCATE with ext4,
you must ensure that your kernel includes commit
d2dc317d564a46dfc683978a2e5a4f91434e9711 (search for
d2dc317d564a46dfc683978a2e5a4f91434e9711 at https://
www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3) is
in your kernel. The Red Hat Bugzilla identifier for the bug
is 1213487. With NODEFER_ALLOCATE, do not use any
filesystem other than ext4 and a kernel with the fix, or xfs.

Effective July 1, 2017, FIS intends to require:

* the then current level of 7 (e.g, 7.3) as the minimum
supported level of Red Hat Enterprise Linux; and

* 16.04 LTS, as the minimum supported level of Ubuntu Linux.

https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1502168
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1502168
https://wiki.ubuntu.com/Kernel/LTSEnablementStack
https://wiki.ubuntu.com/Kernel/LTSEnablementStack
https://www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3
https://www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3

V6.3-001A 32- vs. 64-bit platforms

FIS
Page 6, March 11, 2020 FIS

Platform Supported
Versions

Notes

If these will cause you hardship, please contact your FIS
account manager or your GT.M support channel.

x86 GNU/Linux Red Hat
Enterprise
Linux 6

This 32-bit version of GT.M runs on either 32- or 64-bit x86
platforms; we expect the x86_64 GNU/Linux version of GT.M
to be preferable on 64-bit hardware. Running a 32-bit GT.M on
a 64-bit GNU/Linux requires 32-bit libraries to be installed. The
CPU must have an instruction set equivalent to 586 (Pentium)
or better.

Effective July 1, 2017, FIS intends to consider only Debian
8 (Jessie), or the then Debian Stable, as the sole Supported
platform for the 32-bit version.

Please also refer to the notes above on x86_64 GNU/Linux.

Platform support lifecycle

FIS usually supports new operating system versions six months or so after stable releases are available
and we usually support each version for a two year window. GT.M releases are also normally supported
for two years after release. While FIS will attempt to provide support to customers in good standing for
any GT.M release and operating system version, our ability to provide support diminishes after the two
year window.

GT.M cannot be patched, and bugs are only fixed in new releases of software.

32- vs. 64-bit platforms

The same application code runs on both 32-bit and 64-bit platforms; however there are operational
differences between them (for example, auto-relink and the ability to use GT.M object code from shared
libraries exist only on 64-bit platforms). Please note that:

* You must compile the application code separately for each platform. Even though the M source code
is the same, the generated object modules are different - the object code differs between x86 and
x86_64.

* Parameter-types that interface GT.M with non-M code using C calling conventions must match
the data-types on their target platforms. Mostly, these parameters are for call-ins, external calls,
internationalization (collation) and environment translation, and are listed in the tables below. Note
that most addresses on 64-bit platforms are 8 bytes long and require 8 byte alignment in structures
whereas all addresses on 32-bit platforms are 4 bytes long and require 4-byte alignment in structures.

32- vs. 64-bit platforms V6.3-001A

GTM V6.3-001
FIS

March 11, 2020, Page 7

Call-ins and External Calls

Parameter type 32-Bit 64-bit Remarks

gtm_long_t 4-byte
(32-bit)

8-byte
(64-bit)

gtm_long_t is much the same as the C language long type.

gtm_ulong_t 4-byte 8-byte gtm_ulong_t is much the same as the C language unsigned
long type.

gtm_int_t 4-byte 4-byte gtm_int_t has 32-bit length on all platforms.

gtm_uint_t 4-byte 4-byte gtm_uint_t has 32-bit length on all platforms

Caution

If your interface uses gtm_long_t or gtm_ulong_t types but your interface code uses
int or signed int types, failure to revise the types so they match on a 64-bit platform
will cause the code to fail in unpleasant, potentially dangerous, and hard to diagnose
ways.

Internationalization (Collation)

Parameter type 32-Bit 64-bit Remarks

gtm_descriptor in
gtm_descript.h

4-byte 8-byte Although it is only the address within these types that
changes, the structures may grow by up to 8 bytes as a
result of compiler padding to meet platform alignment
requirements.

Important

Assuming other aspects of code are 64-bit capable, collation routines should require
only recompilation.

Environment Translation

Parameter type 32-Bit 64-bit Remarks

gtm_string_t type in
gtmxc_types.h

4-byte 8-byte Although it is only the address within these types that
changes, the structures may grow by up to 8 bytes as a
result of compiler padding to meet platform alignment
requirements.

V6.3-001A Recompile

FIS
Page 8, March 11, 2020 FIS

Important

Assuming other aspects of code are 64-bit capable, environment translation routines
should require only recompilation.

Recompile

* Recompile all M and C source files.

Rebuild Shared Libraries or Images

* Rebuild all Shared Libraries after recompiling all M and C source files.

If your application is not using object code shared using GT.M's auto-relink functionality, please
consider using it.

Additional Installation Instructions

To install GT.M, see the "Installing GT.M" section in the GT.M Administration and Operations
Guide. For minimal down time, upgrade a current replicating instance and restart replication. Once
that replicating instance is current, switch it to become the originating instance. Upgrade the prior
originating instance to become a replicating instance, and perform a switchover when you want it to
resume an originating primary role.

Caution

Never replace the binary image on disk of any executable file while it is in use by
an active process. It may lead to unpredictable results. Depending on the operating
system, these results include but are not limited to denial of service (that is, system
lockup) and damage to files that these processes have open (that is, database
structural damage).

* FIS strongly recommends installing each version of GT.M in a separate (new) directory, rather than
overwriting a previously installed version. If you have a legitimate need to overwrite an existing
GT.M installation with a new version, you must first shut down all processes using the old version.
FIS suggests installing GT.M V6.3-001A in a Filesystem Hierarchy Standard compliant location such
as /usr/lib/fis-gtm/V6.3-001A_arch (for example, /usr/lib/fis-gtm/V6.3-001A_x86 on 32-bit Linux
systems). A location such as /opt/fis-gtm/V6.3-001A_arch would also be appropriate. Note that the
arch suffix is especially important if you plan to install 32- and 64-bit versions of the same release of
GT.M on the same system.

* Use the appropriate MUPIP RUNDOWN command (e.g. ROLLBACK, RECOVER, RUNDOWN) of the
old GT.M version to ensure all database files are cleanly closed.

Additional Installation Instructions V6.3-001A

GTM V6.3-001
FIS

March 11, 2020, Page 9

* Make sure gtmsecshr is not running. If gtmsecshr is running, first stop all GT.M processes including
the DSE, LKE and MUPIP utilities and then perform a MUPIP STOP pid_of_gtmsecshr.

* Starting with V6.2-000, GT.M no longer supports the use of the deprecated $gtm_dbkeys and
the master key file it points to for database encryption. To convert master files to the libconfig

format, please click to download the CONVDBKEYS.m program and follow instructions in
the comments near the top of the program file. You can also download CONVDBKEYS.m from
http://tinco.pair.com/bhaskar/gtm/doc/articles/downloadables/CONVDBKEYS.m. If you are
using $gtm_dbkeys for database encryption, please convert master key files to libconfig format
immediately after upgrading to V6.2-000. Also, modify your environment scripts to include the use of
gtmcrypt_config environment variable.

Compiling the Reference Implementation Plugin

If you plan to use database encryption and TLS replication, you must compile the reference
implementation plugin to match the shared library dependencies unique to your platform. The
instructions for compiling the Reference Implementation plugin are as follows:

1. Install the development headers and libraries for libgcrypt, libgpgme, libconfig, and libssl. On
Linux, the package names of development libraries usually have a suffix such as -dev or -devel and
are available through the package manager. For example, on Ubuntu_x86_64 a command like the
following installs the required development libraries:

sudo apt-get install libgcrypt11-dev libgpgme11-dev libconfig-dev libssl-dev

Note that the package names may vary by distribution / version.

2. Unpack $gtm_dist/plugin/gtmcrypt/source.tar to a temporary directory.

mkdir /tmp/plugin-build
cd /tmp/plugin-build
cp $gtm_dist/plugin/gtmcrypt/source.tar .
tar -xvf source.tar

3. Follow the instructions in the README.

* Open Makefile with your editor; review and edit the common header (IFLAGS) and library paths
(LIBFLAGS) in the Makefile to reflect those on your system.

* Define the gtm_dist environment variable to point to the absolute path for the directory where
you have GT.M installed

* Copy and paste the commands from the README to compile and install the encryption plugin
with the permissions defined at install time

http://tinco.pair.com/bhaskar/gtm/doc/articles/downloadables/CONVDBKEYS.m

V6.3-001A Upgrading to GT.M V6.3-001A

FIS
Page 10, March 11, 2020 FIS

Upgrading to GT.M V6.3-001A

The GT.M database consists of four types of components- database files, journal files, global directories,
and replication instance files. The format of some database components differs for 32-bit and 64-bit
GT.M releases for the x86 GNU/Linux platform.

GT.M upgrade procedure for V6.3-001A consists of 5 stages:

* Stage 1: Global Directory Upgrade

* Stage 2: Database Files Upgrade

* Stage 3: Replication Instance File Upgrade

* Stage 4: Journal Files Upgrade

* Stage 5: Trigger Definitions Upgrade

Read the upgrade instructions of each stage carefully. Your upgrade procedure for GT.M V6.3-001A
depends on your GT.M upgrade history and your current version.

Stage 1: Global Directory Upgrade

FIS strongly recommends you back up your Global Directory file before upgrading. There is no one-step
method for downgrading a Global Directory file to an older format.

To upgrade from any previous version of GT.M:

* Open your Global Directory with the GDE utility program of GT.M V6.3-001A.

* Execute the EXIT command. This command automatically upgrades the Global Directory.

To switch between 32- and 64-bit global directories on the x86 GNU/Linux platform:

1. Open your Global Directory with the GDE utility program on the 32-bit platform.

2. On GT.M versions that support SHOW -COMMAND, execute SHOW -COMMAND -FILE=file-name.
This command stores the current Global Directory settings in the specified file. .

3. On GT.M versions that do not support GDE SHOW -COMMAND, execute the SHOW -ALL
command. Use the information from the output to create an appropriate command file or use it as a
guide to manually enter commands in GDE.

4. Open GDE on the 64-bit platform. If you have a command file from 2. or 3., execute @file-name
and then run the EXIT command. These commands automatically create the Global Directory.
Otherwise use the GDE output from the old Global Directory and apply the settings in the new
environment.

An analogous procedure applies in the reverse direction.

If you inadvertently open a Global Directory of an old format with no intention of upgrading it, execute
the QUIT command rather than the EXIT command.

Upgrading to GT.M V6.3-001A V6.3-001A

GTM V6.3-001
FIS

March 11, 2020, Page 11

If you inadvertently upgrade a global directory, perform the following steps to downgrade to an old
GT.M release:

* Open the global directory with the GDE utility program of V6.3-001A.

* Execute the SHOW -COMMAND -FILE=file-name command. This command stores the current
Global Directory settings in the file-name command file. If the old version is significantly out of date,
edit the command file to remove the commands that do not apply to the old format. Alternatively,
you can use the output from SHOW -ALL or SHOW -COMMAND as a guide to manually enter
equivalent GDE commands for the old version.

Stage 2: Database Files Upgrade

To upgrade from GT.M V5.0*/V5.1*/V5.2*/V5.3*/V5.4*/V5.5:

A V6 database file is a superset of a V5 database file and has potentially longer keys and records.
Therefore, upgrading a database file requires no explicit procedure. After upgrading the Global
Directory, opening a V5 database with a V6 process automatically upgrades fields in the database
fileheader.

A database created with V6 supports up to 992Mi blocks and is not backward compatible. V6 databases
that take advantage of V6 limits on key size and records size cannot be downgraded. Use MUPIP
DOWNGRADE -VERSION=V5 to downgrade a V6 database back to V5 format provided it meets
the database downgrade requirements. For more information on downgrading a database, refer to
Downgrading to V5 or V4.

Important

A V5 database that has been automatically upgraded to V6 can perform all GT.M
V6.3-001A operations. However, that database can only grow to the maximum size
of the version in which it was originally created. A database created on V5.0-000
through V5.3-003 has maximum size of 128Mi blocks. A database created on V5.4-000
through V5.5-000 has a maximum size of 224Mi blocks. A database file created with
V6.0-000 (or above) can grow up to a maximum of 992Mi blocks. This means that, for
example, the maximum size of a V6 database file having 8KiB block size is 7936GiB
(8KiB*992Mi).

Important

In order to perform a database downgrade you must perform a MUPIP INTEG -
NOONLINE. If the duration of the MUPIP INTEG exceeds the time allotted for an
upgrade you should rely on a rolling upgrade scheme using replication.

If your database has any previously used but free blocks from an earlier upgrade cycle (V4 to V5),
you may need to execute the MUPIP REORG -UPGRADE command. If you have already executed the
MUPIP REORG -UPGRADE command in a version prior to V5.3-003 and if subsequent versions cannot

V6.3-001A Upgrading to GT.M V6.3-001A

FIS
Page 12, March 11, 2020 FIS

determine whether MUPIP REORG -UPGRADE performed all required actions, it sends warnings to
the syslog requesting another run of MUPIP REORG -UPGRADE. In that case, perform any one of the
following steps:

* Execute the MUPIP REORG -UPGRADE command again, or

* Execute the DSE CHANGE -FILEHEADER -FULLY_UPGRADED=1 command to stop the warnings.

Caution

Do not run the DSE CHANGE -FILEHEADER -FULLY_UPGRADED=1 command
unless you are absolutely sure of having previously run a MUPIP REORG -
UPGRADE from V5.3-003 or later. An inappropriate DSE CHANGE -FILEHEADE -
FULLY_UPGRADED=1 may lead to database integrity issues.

You do not need to run MUPIP REORG -UPGRADE on:

* A database that was created by a V5 MUPIP CREATE

* A database that has been completely processed by a MUPIP REORG -UPGRADE from V5.3-003 or
later.

For additional upgrade considerations, refer to Database Compatibility Notes.

To upgrade from a GT.M version prior to V5.000:

You need to upgrade your database files only when there is a block format upgrade from V4 to V5.
However, some versions, for example, database files which have been initially been created with V4
(and subsequently upgraded to a V5 format) may additionally need a MUPIP REORG -UPGRADE
operation to upgrade previously used but free blocks that may have been missed by earlier upgrade
tools.

* Upgrade your database files using in-place or traditional database upgrade procedure depending
on your situation. For more information on in-place/traditional database upgrade, see Database
Migration Technical Bulletin.

* Run the MUPIP REORG -UPGRADE command. This command upgrades all V4 blocks to V5 format.

Note

Databases created with GT.M releases prior to V5.0-000 and upgraded to a V5 format
retain the maximum size limit of 64Mi (67,108,864) blocks.

Database Compatibility Notes

* Changes to the database file header may occur in any release. GT.M automatically upgrades database
file headers as needed. Any changes to database file headers are upward and downward compatible
within a major database release number, that is, although processes from only one GT.M release can

http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_Database_Migration.html
http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_Database_Migration.html

Upgrading to GT.M V6.3-001A V6.3-001A

GTM V6.3-001
FIS

March 11, 2020, Page 13

access a database file at any given time, processes running different GT.M releases with the same
major release number can access a database file at different times.

* Databases created with V5.3-004 through V5.5-000 can grow to a maximum size of 224Mi
(234,881,024) blocks. This means, for example, that with an 8KiB block size, the maximum database
file size is 1,792GiB; this is effectively the size of a single global variable that has a region to itself and
does not itself span regions; a database consists of any number of global variables. A database created
with GT.M versions V5.0-000 through V5.3-003 can be upgraded with MUPIP UPGRADE to increase
the limit on database file size from 128Mi to 224Mi blocks.

* Databases created with V5.0-000 through V5.3-003 have a maximum size of 128Mi (134, 217,728)
blocks. GT.M versions V5.0-000 through V5.3-003 can access databases created with V5.3-004 and
later as long as they remain within a 128Mi block limit.

* Database created with V6.0-000 or above have a maximum size of 1,040,187,392(992Mi) blocks.

* For information on downgrading a database upgraded from V6 to V5, refer to: Downgrading to V5 or
V4.

Stage 3: Replication Instance File Upgrade

V6.3-001A does not require new replication instance files if you are upgrading from V5.5-000. However,
V6.3-001A requires new replication instance files if you are upgrading from any version prior to
V5.5-000. Instructions for creating new replication instance files are in the Database Replication chapter
of the GT.M Administration and Operations Guide. Shut down all Receiver Servers on other instances
that are to receive updates from this instance, shut down this instance Source Server(s), recreate the
instance file, restart the Source Server(s) and then restart any Receiver Server for this instance with the
-UPDATERESYNC qualifier.

Note

Without the -UPDATERESYNC qualifier, the replicating instance synchronizes with
the originating instance using state information from both instances and potentially
rolling back information on the replicating instance. The -UPDATERESYNC qualifier
declares the replicating instance to be in a wholesome state matching some prior (or
current) state of the originating instance; it causes MUPIP to update the information
in the replication instance file of the originating instance and not modify information
currently in the database on the replicating instance. After this command, the
replicating instance catches up to the originating instance starting from its own
current state. Use UPDATERESYNC only when you are absolutely certain that
the replicating instance database was shut down normally with no errors, or
appropriately copied from another instance with no errors.

Important

You must always follow the steps described in the Database Replication chapter of
the GT.M Administration and Operations Guide when migrating from a logical dual

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch07.html
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch07.html

V6.3-001A Upgrading to GT.M V6.3-001A

FIS
Page 14, March 11, 2020 FIS

site (LDS) configuration to an LMS configuration, even if you are not changing GT.M
releases.

Stage 4: Journal Files Upgrade

On every GT.M upgrade:

* Create a fresh backup of your database.

* Generate new journal files (without back-links).

Important

This is necessary because MUPIP JOURNAL cannot use journal files from a release
other than its own for RECOVER, ROLLBACK, or EXTRACT.

Stage 5: Trigger Definitions Upgrade

If you are upgrading from V5.4-002A/V5.4-002B/V5.5-000 to V6.3-001A and you have database triggers
defined in V6.2-000 or earlier, you need to ensure that your trigger definitions are wholesome in the
older version and then run MUPIP TRIGGER -UPGRADE. If you have doubts about the wholesomeness
of the trigger definitions in the old version use the instructions below to capture the definitions delete
them in the old version (-*), run MUPIP TRIGGER -UPGRADE in V6.3-001A and then reload them as
described below.

You need to extract and reload your trigger definitions only if you are upgrading from V5.4-000/
V5.4-000A/V5.4-001 to V6.3-001A or if you find your prior version trigger definitions have problems.
For versions V5.4-000/V5.4-000A/V5.4-001 this is necessary because multi-line XECUTEs for triggers
require a different internal storage format for triggers which makes triggers created in V5.4-000/
V5.4-000A/V5.4-001 incompatible with V5.4-002/V5.4-002A/V5.4-002B/V5.5-000/V6.0-000/V6.0-001/
V6.3-001A.

To extract and reapply the trigger definitions on V6.3-001A using MUPIP TRIGGER:

1. Using the old version, execute a command like mupip trigger -select="*" trigger_defs.trg. Now,
the output file trigger_defs.trg contains all trigger definitions.

2. Place -* at the beginning of the trigger_defs.trg file to remove the old trigger definitions.

3. Using V6.3-001A, run mupip trigger -triggerfile=trigger_defs.trg to reload your trigger
definitions.

To extract and reload trigger definitions on a V6.3-001A replicating instance using $ZTRIGGER():

1. Shut down the instance using the old version of GT.M.

2. Execute a command like mumps -run %XCMD 'i $ztrigger("select")' > trigger_defs.trg . Now,
the output file trigger_defs.trg contains all trigger definitions.

Upgrading to GT.M V6.3-001A V6.3-001A

GTM V6.3-001
FIS

March 11, 2020, Page 15

3. Turn off replication on all regions.

4. Run mumps -run %XCMD 'i $ztrigger("item","-*") to remove the old trigger definitions.

5. Perform the upgrade procedure applicable for V6.3-001A.

6. Run mumps -run %XCMD 'if $ztrigger("file","trigger_defs.trg")' to reapply your trigger
definitions.

7. Turn replication on.

8. Connect to the originating instance.

Note

Reloading triggers renumbers automatically generated trigger names.

Downgrading to V5 or V4

You can downgrade a GT.M V6 database to V5 or V4 format using MUPIP DOWNGRADE.

Starting with V6.0-000, MUPIP DOWNGRADE supports the -VERSION qualifier with the following
format:

MUPIP DOWNGRADE -VERSION=[V5|V4]

-VERSION specifies the desired version for the database header.

To qualify for a downgrade from V6 to V5, your database must meet the following
requirements:

1. The database was created with a major version no greater than the target version.

2. The database does not contain any records that exceed the block size (spanning nodes).

3. The sizes of all the keys in database are less than 256 bytes.

4. There are no keys present in database with size greater than the Maximum-Key-Size specification in
the database header, that is, Maximum-Key-Size is assured.

5. The maximum Record size is small enough to accommodate key, overhead, and value within a block.

To verify that your database meets all of the above requirements, execute MUPIP INTEG -NOONLINE.
Note that the integrity check requires the use of -NOONLINE to ensure no concurrent updates
invalidate the above requirements. Once assured that your database meets all the above requirements,
MUPIP DOWNGRADE -VERSION=V5 resets the database header to V5 elements which makes it
compatible with V5 versions.

To qualify for a downgrade from V6 to V4, your database must meet the same downgrade requirements
that are there for downgrading from V6 to V5.

V6.3-001A Managing M mode and UTF-8 mode

FIS
Page 16, March 11, 2020 FIS

If your database meets the downgrade requirements, perform the following steps to downgrade to V4:

1. In a GT.M V6.3-001A environment:

a. Execute MUPIP SET -VERSION=v4 so that GT.M writes updates blocks in V4 format.

b. Execute MUPIP REORG -DOWNGRADE to convert all blocks from V6 format to V4 format.

2. Bring down all V6 GT.M processes and execute MUPIP RUNDOWN -FILE on each database file to
ensure that there are no processes accessing the database files.

3. Execute MUPIP DOWNGRADE -VERSION=V4 to change the database file header from V6 to V4.

4. Restore or recreate all the V4 global directory files.

5. Your database is now successfully downgraded to V4.

Managing M mode and UTF-8 mode

With International Components for Unicode (ICU) version 3.6 or later installed, GT.M's UTF-8 mode
provides support for Unicode™ (ISO/IEC-10646) character strings. On a system that does not have ICU
3.6 or later installed, GT.M only supports M mode.

On a system that has ICU installed, GT.M optionally installs support for both M mode and UTF-8
mode, including a utf8 subdirectory of the directory where GT.M is installed. From the same source
file, depending upon the value of the environment variable gtm_chset, the GT.M compiler generates
an object file either for M mode or UTF-8 mode. GT.M generates a new object file when it finds both
a source and an object file, and the object predates the source file and was generated with the same
setting of $gtm_chset/$ZCHset. A GT.M process generates an error if it encounters an object file
generated with a different setting of $gtm_chset/$ZCHset than that processes' current value.

Always generate an M object module with a value of $gtm_chset/$ZCHset matching the value
processes executing that module will have. As the GT.M installation itself contains utility programs
written in M, their object files also conform to this rule. In order to use utility programs in both
M mode and UTF-8 mode, the GT.M installation ensures that both M and UTF-8 versions of object
modules exist, the latter in the utf8 subdirectory. This technique of segregating the object modules by
their compilation mode prevents both frequent recompiles and errors in installations where both modes
are in use. If your installation uses both modes, consider a similar pattern for structuring application
object code repositories.

GT.M is installed in a parent directory and a utf8 subdirectory as follows:

* Actual files for GT.M executable programs (mumps, mupip, dse, lke, and so on) are in the parent
directory, that is, the location specified for installation.

* Object files for programs written in M (GDE, utilities) have two versions - one compiled with support
for UTF-8 mode in the utf8 subdirectory, and one compiled without support for UTF-8 mode in the
parent directory. Installing GT.M generates both versions of object files, as long as ICU 3.6 or greater
is installed and visible to GT.M when GT.M is installed, and you choose the option to install Unicode

http://icu-project.org

Setting the environment variable TERM V6.3-001A

GTM V6.3-001
FIS

March 11, 2020, Page 17

support. Note that on 64-bit versions of GT.M, the object code is in shared libraries, rather than
individual files in the directory.

* The utf8 subdirectory has files called mumps, mupip, dse, lke, and so on, which are relative symbolic
links to the executables in the parent directory (for example, mumps is the symbolic link ../mumps).

* When a shell process sources the file gtmprofile, the behavior is as follows:

* If $gtm_chset is "m", "M" or undefined, there is no change from the previous GT.M versions to the
value of the environment variable $gtmroutines.

* If $gtm_chset is "UTF-8" (the check is case-insensitive),

* $gtm_dist is set to the utf8 subdirectory (that is, if GT.M is installed in /usr/lib/fis-gtm/
gtm_V6.3-001A_i686, then gtmprofile sets $gtm_dist to /usr/lib/fis-gtm/gtm_V6.3-001A_i686/
utf8).

* On platforms where the object files have not been placed in a libgtmutil.so shared library,
the last element of $gtmroutines is $gtm_dist($gtm_dist/..) so that the source files in the
parent directory for utility programs are matched with object files in the utf8 subdirectory. On
platforms where the object files are in libgtmutil.so, that shared library is the one with the object
files compiled in the mode for the process.

For more information on gtmprofile, refer to the Basic Operations chapter of GT.M Administration and
Operations Guide.

Although GT.M uses ICU for UTF-8 operation, ICU is not FIS software and FIS does not support ICU.

Setting the environment variable TERM

The environment variable TERM must specify a terminfo entry that accurately matches the terminal
(or terminal emulator) settings. Refer to the terminfo man pages for more information on the terminal
settings of the platform where GT.M needs to run.

* Some terminfo entries may seem to work properly but fail to recognize function key sequences or
fail to position the cursor properly in response to escape sequences from GT.M. GT.M itself does
not have any knowledge of specific terminal control characteristics. Therefore, it is important to
specify the right terminfo entry to let GT.M communicate correctly with the terminal. You may need
to add new terminfo entries depending on your specific platform and implementation. The terminal
(emulator) vendor may also be able to help.

* GT.M uses the following terminfo capabilities. The full variable name is followed by the capname in
parenthesis:

auto_right_margin(am), clr_eos(ed), clr_eol(el), columns(cols), cursor_address(cup),
 cursor_down(cud1), cursor_left(cub1), cursor_right(cuf1), cursor_up(cuu1),
 eat_newline_glitch(xenl), key_backspace(kbs), key_dc(kdch1),key_down(kcud1),
 key_left(kcub1), key_right(kcuf1), key_up(kcuu1), key_insert(kich1),
 keypad_local(rmkx),keypad_xmit(smkx), lines(lines).

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch03.html

V6.3-001A Installing Compression Libraries

FIS
Page 18, March 11, 2020 FIS

GT.M sends keypad_xmit before terminal reads for direct mode and READs (other than READ *) if
EDITING is enabled. GT.M sends keypad_local after these terminal reads.

Installing Compression Libraries

If you plan to use the optional compression facility for replication, you must provide the compression
library. The GT.M interface for compression libraries accepts the zlib compression libraries without
any need for adaptation. These libraries are included in many UNIX distributions and are downloadable
from the zlib home page. If you prefer to use other compression libraries, you need to configure or
adapt them to provide the same API as that provided by zlib.

If a package for zlib is available with your operating system, FIS suggests that you use it rather than
building your own.

By default, GT.M searches for the libz.so shared library in the standard system library directories (for
example, /usr/lib, /usr/local/lib, /usr/local/lib64). If the shared library is installed in a non-standard
location, before starting replication, you must ensure that the environment variable LIBPATH (AIX)
or LD_LIBRARY_PATH (GNU/Linux) includes the directory containing the library. The Source and
Receiver Server link the shared library at runtime. If this fails for any reason (such as file not found,
or insufficient authorization), the replication logic logs a DLLNOOPEN error and continues with no
compression.

Although GT.M uses a library such as zlib for compression, such libraries are not FIS software and FIS
does not support any compression libraries.

http://www.zlib.net

GT.M V6.3-001
FIS

March 11, 2020, Page 19

Change History

V6.3-001A

Fixes and enhancements specific to V6.3-001A:

Id Prior Id Category Summary

GTM-8632 - Other On Linux, an environment variable to help
manage core file generation

GTM-8685 - DB Forward Rollback Consistency with Journal
Renaming

GTM-8700 - DB Fixes to issues related to statistics sharing

GTM-8702 - DB Always ensure before images when needed
in TP allocations

GTM-8705 Language ZSHOW/ZWRITE work correctly even if
they result in a garbage collection

V6.3-001

Fixes and enhancements specific to V6.3-001:

Id Prior Id Category Summary

GTM-4283 S9C04-002078 Other GT.M accepts routines with "DOS-style"
terminators

GTM-5206 S9D12-002397 DB If possible, avoid journal file hardening
when holding a database critical section

GTM-6037 C9H07-002874 DB Reporting of numeric subscripts in globals
which should not use them

GTM-6085 C9H10-002922 Other Update Process Reader Helper avoids rare
abnormal termination

GTM-6332 C9J01-003085 Other Code generation cleanup on Linux

GTM-6598 C9K04-003268 Admin Limit the time MUPIP BACKUP and INTEG
wait for kill-in-progress to clear

GTM-6699 D9K10-002792 DB Opt-in facility for statistics sharing

GTM-6793 C9L04-003395 Language Limit MERGE into an lvn to 31 subscripts

Change History V6.3-001

FIS
Page 20, March 11, 2020 FIS

Id Prior Id Category Summary

GTM-6838 C9L06-003425 DB Asynchronous database IO

GTM-7593 - Admin More reliable journal flushing in edge cases
under replication

GTM-7729 - Admin LOCKs have separate resource
management by default, but you can select
shared resource management

GTM-7778 - Other More consistent timestamps on AIX
gtmsecshr messages

GTM-7837 - Admin MUPIP REPLICATE -CHANGELOG waits
for up to 25 seconds to confirm a change
log request

GTM-7857 - DB Reporting of empty-string subscripts that
conflict with database settings

GTM-7922 - Admin MUPIP EXTRACT protects against
concurrent updates to region spanning
updates

GTM-8254 - Language USE command accepts [I|O]CHSET for
Sequential Disks, SOCKETs and terminals

GTM-8357 - Language GT.M initializes the value of $ZSTEP from
the environment variable $gtm_zstep if it is
defined

GTM-8359 - Language More general support for indirect
arguments to TSTART commands and an
explicit error for TSTART in direct mode

GTM-8362 - Admin Allow updates during a MUPIP FREEZE

GTM-8366 - Language Clear $REFERENCE after an error in a
global reference

GTM-8373 - Admin Accept rapid changes to replication logs
destination files

GTM-8385 - Language Computations using literals largely
performed at compile time

GTM-8427 - Language $ZCOLLATE() converts a GVN and
$ZATRANSLATE() an expression to a key
representation and back

GTM-8430 - Other Improvement in critical section acquisition
for x86_64 Linux

V6.3-001 Change History

GTM V6.3-001
FIS

March 11, 2020, Page 21

Id Prior Id Category Summary

GTM-8447 - Admin MUPIP DUMPFHEAD provides lighter
weight and less problematic access to
database state information

GTM-8542 - Admin MUPIP LOAD -FORMAT=Binary validates
keys in the extract records

GTM-8544 - Other Timer interrupt reduction

GTM-8547 - Admin Source Server handles reconnection errors
more gracefully.

GTM-8553 - DB Eliminate an interaction between poollimit
and extended global references

GTM-8559 - Language $gtm_etrap and $gtm_trigger_etrap accept
8192 byte strings

GTM-8561 - Other Deal appropriately with M process data
exceeding 2GiB

GTM-8562 - Other The configure install script creates routine
directories even when reusing an existing
directory

GTM-8564 - Admin Protect an interrupted MUPIP REORG -
ENCRYPT from an intervening MUPIP
REORG -TRUNCATE

GTM-8567 - Other configure script defaults locale to allow a
UTF-8 installation to proceed

GTM-8568 - Language Fix three rare trigger update issues

GTM-8569 - Other Prevent rare duplicate messages when the
number of processes in an instance exceeds
32ki

GTM-8570 - Other Eliminate superfluous literals from object
modules

GTM-8571 - Other Fix regression in ^%GI for GO format
containing any empty data values

GTM-8572 - Language Prevent instances of pre-evaluation in
$SELECT()

GTM-8573 - Language Compiler optimization for IF <literal> and
command postconditional literals

GTM-8578 - Other Correct handling of non-char arrays in
%PEEKBYNAME()

Change History V6.3-001

FIS
Page 22, March 11, 2020 FIS

Id Prior Id Category Summary

GTM-8579 - Language Operator optimizations at compile time

GTM-8582 - Admin Appropriate Source Server startup with
Sync I/O and 4KiB sector sizes on an XFS
filesystem

GTM-8583 - Language Prevent inappropriate
MAXNRSUBSCRIPTS errors from MERGE

GTM-8584 - Language Prevent GTMASSERT caused by
a <NUL> character generating a
NOCANONICNAME error message

GTM-8590 - Language Certain timed operations deferred during
$ZCONVERT()

GTM-8593 - Language OPEN of an existing SOCKET device can
modify ZFF & delimiters; also $KEY is
always in UTF-8

GTM-8595 - Language Fix to M mode handling of non-ASCII
literals

GTM-8597 - DB Better protection against one type of
random error

GTM-8598 - Other Certain operations deferred while
processing character input

GTM-8599 - Admin Correct odd case for MUPIP JOURNAL -
ROLLBACK -FORWARD

GTM-8602 - Other MUPIP JOURNAL accepts multiple EOF
records

GTM-8609 - Admin Improved error messaging for errors that
occur during the first access of a journal
file

GTM-8610 - Admin The Receiver Server avoids rare situations
that could cause it to exit

GTM-8612 - Admin MUPIP LOAD handles minimal headers
and long lines gracefully

GTM-8613 - DB Protect against concurrent creation of
global variable with differing collation
characteristics

GTM-8614 - Admin REQROLLBACK message indicates
required -ROLLBACK also requires -
NOONLINE

V6.3-001 Change History

GTM V6.3-001
FIS

March 11, 2020, Page 23

Id Prior Id Category Summary

GTM-8615 - Other Certain timed operations deferred during
external calls

GTM-8629 - Admin MUPIP RESTORE treats truncated input as
an error

GTM-8637 - Other Prevent GTMASSERT2 from very long
running jobs performing TP transactions

GTM-8639 - Language ZSHOW "G" provides Block Transition to
Dirty (BTD) statistic for BG databases

GTM-8640 - Language Accept <NUL> characters in literals use for
indirection and XECUTE

GTM-8641 - DB $ORDER(,-1) of global variables that span
database blocks returns correct result

GTM-8642 - Other Prevent rare inappropriate GTMASSERT2
from MUPIP STOP of a process while
changing encryption keys

GTM-8645 - Other Improved (but imperfect) tracking of
database reference count

GTM-8654 - Admin Revised permission handling when
determining group membership

GTM-8655 - DB Improved database structural integrity
protection against kill -9

GTM-8656 Admin Support for OpenSSL 1.1.0

GTM-8657 - Admin Replication from BC to SI handles multiple
connections with no intervening updates

GTM-8659 - Other Better file cleanup in case of abnormal
termination during file creation

GTM-8660 - Admin Improved System Profiling for x86_64
Linux editions

GTM-8664 - DB Defer idle epoch while holding journal pool
critical section lock.

GTM-8668 - Admin Simplify GPG Agent interaction with the
encryption reference implementation

GTM-8672 - Language Adjustments to improve the memory
utilization for heap space (primarily local
variable storage)

GTM-8676 - Other Fix to DSE FIND -KEY

Change History V6.3-001

FIS
Page 24, March 11, 2020 FIS

Id Prior Id Category Summary

GTM-8679 - Language Global name-level $ORDER() maintains
$REFERENCE

GTM-8686 - Other ^%TI works as documented

GTM-8687 - DB GT.M properly handles loading successive
global directories with increasing numbers
of regions

GTM-8689 - Language Protect OPEN command against external
actions

GT.M V6.3-001
FIS

March 11, 2020, Page 25

Database

*
 GT.M defers the hardening (fsync) of a journaled database file (a potentially time

consuming operation) to occur as much as possible outside the database critical section, particularly
when it is time to write an EPOCH record in the journal file. Previously, this was done while holding
the critical section which could affect database transaction throughput. (GTM-5206)

*
MUPIP INTEG, DSE INTEG and in some instances VIEW "GDSCERT" produce a

NONUMSUBS error if they encounter a numeric subscript in a global variable tree that has been
defined to only use string subscripts; previously, they did not report this issue. (GTM-6037)

*
 GT.M provides a fast and efficient mechanism for processes to share their database

access statistics for other processes to monitor. In addition GT.M now supports implicit instantiation
of a database file. Please refer to the Additional_Information section for the details and implications
of this feature. (GTM-6699)

*
 Released as field test grade functionality in a production release, asynchronous IO

is an option for database segments using the BG access method; previously GT.M performed only
synchronous I/O through the file system cache. Also, when invoked from the shell, GDE returns a
non-zero status in case it terminates with errors; previously it always returned a zero status, even
if it encountered errors. Note: when invoked from GT.M, GDE does not return a status. MUPIP
RUNDOWN appropriately manages the FTOK semaphore associated with a database to which it
has read-only access; previously it inappropriately removed that semaphore if the database was
quiescent but its attachment counter had ever exceeded 32Ki simultaneous processes. Please refer to
the Additional Information section for details. (GTM-6838)

*
 When MUPIP INTEG, DSE INTEG -BLOCK, or VIEW "GDSCERT":1 processing

encounter an empty-string ("null") subscript that does not match current file header settings for the
null characteristic they issue a DBNULCOL or NULLSUBS error. If MUPIP LOAD-FORMAT=BINARY
encounters empty-string subscripts in an extract it is loading on a database that does not permit
such subscripts, it produces a NULLSUBS error. Previously, these functions did not report these
errors (MUPIP LOAD did not load the offending data). Also, if MUPIP LOAD -FORMAT=BINARY
encounters two keys that are the same except for their representations of empty string subscripts, it
produces a warning message and discards the one whose representation does not match that of the
database into which the data is being loaded. (GTM-7857)

*
 Extended references work correctly when poollimit is enabled. Previously, such

a combination could produce GTMASSERT failures. This issue was only observed in the GT.M
development environment, and was never reported by a user. (GTM-8553)

*
 GT.M protects itself against one type of random error in a control field used for buffer

management. Previously, recovery required shutting the database down. The error observed most

Database

FIS
Page 26, March 11, 2020 FIS

likely resulted from some sort of hardware malfunction. Note that FIS recommmends the use of ECC
RAM in production systems. (GTM-8597)

*
 GT.M issues a ACTCOLLMISMTCH error in case multiple processes concurrently

attempt to create the first global node of a global variable using differing collation characteristics
(defined through the -GBLNAME section of their respective global directories). Previously, it was
possible for processes to proceed to update with conflicting views of the global's collation, resulting
in global nodes with misaligned collation sequences in the same global, creating an application level
data integrity error. This issue was only observed in the GT.M development environment, and was
never reported by a user.(GTM-8613)

*
 $ORDER(gvn,-1) and $ZPREVIOUS(gvn) work correctly in case of spanning nodes.

Since GT.M V6.2-002, due to a regression introduced in GTM-7917, it could return the same value as
the last subscript in the input key in case the global corresponding to gvn contained spanning nodes.
For example if ^X(3) existed and was a spanning node, $ORDER(^X(4),-1) would return 4 instead of
3, potentially leading to infinite loops. If ^X(3) was not a spanning node, $ORDER() would return
the correct value. The return value was unaffected by the existence or non-existence of a subtree of
^X(3). (GTM-8641)

*
 GT.M does better in maintaining database integrity in the face of a kill -9 of a process

in the middle of a database commit. Previously, if a process trying to update a particular GDS block
was killed in the middle of a commit, it was possible to lose prior updates to just that block within
the same epoch, resulting in a database file with structural damage. Note that FIS continues to
strongly recommend against kill -9 of processes that have opened a database file. (GTM-8655)

*
 GT.M defers performing an idle epoch if it concurrently holds the journal pool critical

section lock. Previously, under rare conditions, performing the idle epoch in this situation could
result in database deadlock. This issue was only observed in the GT.M development environment,
and was never reported by a user. (GTM-8664)

* GT.M marks journal files as current or not current, which allows it to deal more appropriately with
an operational situation in which an operator renamed an older journal file as current. Previously,
GT.M MUPIP ROLLBACK -FORWARD could not detect this operational issue and consequently
failed to deliver a consistent state at completion. (GTM-8685)

*
 GT.M now properly handles loading multiple global directories with increasing

numbers of regions. Previously, this could have resulted in memory corruption if a process first
opened the first global directory with fewer regions AND both global directories had at least one
global variable name that spanned multiple regions. This issue was never reported by users and was
only seen in the GT.M development environment. (GTM-8687)

* Operations on statistics database files (e.g. VIEW "STATSHARE", VIEW "NOSTATSHARE", direct
access to ^%YGS global nodes) work correctly even in the case a process accesses the same statistics
database file through more than one global directory. In GT.M V6.3-001, this could cause the process
to terminate abnormally with a segmentation violation (SIG-11). GT.M correctly creates statistics
database files (which are always created dynamically) even in case of heavy database contention

Database

GTM V6.3-001
FIS

March 11, 2020, Page 27

amongst processes. In GT.M V6.3-001, if a process in a TP transaction (TSTART/TCOMMIT fence)
was in its final retry (due to restarts from other concurrently running processes), it was rare but
possible to encounter a deadlock. $ZPEEK issues a BADZPEEKARG error when its argument
specifies a non-existent lower-case region name. In GT.M V6.3-001, this terminated the process
with a segmentation violation (SIG-11). MERGE, ZWRITE, $DATA(), $ORDER(), and $QUERY()
involving ^%YGS open any implicitly associated statistics database files when run outside of a TP
transaction. In GT.M V6.3-001, they could ignore ^%YGS nodes corresponding to regions previously
unopened or untracked by the process. Note that these operations within an explicit TP transaction
do not implicitly open any not-yet-open statistics database until after the transaction commits. GT.M
correctly handles a MUPIP SET -REPLICATION=ON for a region which was still replicating after
journaling turned off (in the "was_on" state). In GT.M V6.3-001, due to a regression introduced by
GTM-7593, an exiting process executing in a small window of instructions in database rundown
logic could, in rare, cases terminate with a segmentation violation (SIG-11). MUPIP SET JOURNAL
and MUPIP REPLICATE -INSTANCE_CREATE issue appropriate errors when their input attempts
to create journal and/or replication-instance file names whose absolute path is more than 255 bytes
long. Previously, it was possible for these commands to abnormally terminate with a "stack smashing
detected" error due to GT.M-internal buffer overflows. All these issues were only observed in the
GT.M development environment, and were never reported by a user. (GTM-8700)

* Updates within explicit (TSTART/TCOMMIT) or implicit (spanning nodes or regions, or triggers)
transactions requiring one or more additional blocks reliably write before images (if configured) to
the journal file or to a MUPIP BACKUP -ONLINE. Missing before images could cause incorrect or
damaged databases after a MUPIP JOURNAL -RECOVER or -ROLLBACK, or in a backup. In GT.M
V6.3-001, due to a flaw in GTM-8637, in rare cases when choosing a previously freed block, GT.M
failed to appropriately write a before image. This issue were only observed in the GT.M development
environment, and was never reported by a user.(GTM-8702)

GTM V6.3-001
Page 28, March 11, 2020 FIS

GT.M V6.3-001
FIS

March 11, 2020, Page 29

Language

*
 MERGE into a local variable (lvn) target limits the number of target subscripts to the

maximum number supported by GT.M (currently 31); previously, MERGE could produce variables
with 32 subscripts which could cause subsequent problems. (GTM-6793)

*
 The USE command accepts [I|O]CHSET as valid deviceparameters. It is possible to

change the character set of an open device. In addition to USE, the OPEN command also changes
the character set of an already opened device including Sequential Disk, SOCKET and terminal
devices. It is useful to deal with binary data intermixed with character data. Previously, there was no
documented way to change the character set of an open device. (GTM-8254)

*
 GT.M takes the initial value of $ZSTEP from the environment variable gtm_zstep,

with a default value of "B" (a BREAK command) if gtm_zstep is not defined; previously, changing the
default value required a SET command. (GTM-8357)

*
 TSTART commands with indirect arguments work correctly in GT.M. Previously, they

allowed only specification of a single local variable with no parentheses, SERIAL flag or transaction
id parameter. Also, use of TSTART in direct mode is prohibited and generates a NODMTSTART
error. Previously, TSTART/TCOMMIT sometimes worked when on the same direct mode command
line but more often got strange errors and caused memory leaks at best. (GTM-8359)

*
 GT.M assigns an empty string to $REFERENCE when there is an error while

constructing a subscripted global variable. Previously, GT.M assigned the last successful subscripted
global variable to $REFERENCE. (GTM-8366)

*
 GT.M performs arithmetic operations involving only literals at compile time, with the

exception of divide and integer divide (/ and \) by zero (0), which because of their use to intentionally
produce an error is left to run time. Note that modulo (#) produces a compile time error. Previously,
GT.M did all such calculations at run-time. (GTM-8385)

*
 $ZCOLLATE(glvn,intexpr[,{0|1}]) returns a transformed representation of a first

argument glvn using the alternative transform specified by the second argument intexpr that, by
default, or if the optional third argument is zero (0), represents a normalized form that can be used
as an operand to the follows (]) or sorts-after operator ([[) such that, if both operands are in the
normalized form, the result is independent of alternative collation. If the optional third argument is
non-zero, $ZCOLLATE() returns a reverse transform of the first argument intended to restore the
normalized form to the native M glvn representation. $ZCOLLATE() replaces the "YGVN2GDS" and
"YGDS2GVN" arguments to $VIEW(), which are deprecated. $ZATRANSFORM(expr,intexpr[,{0|1}]
[,{0|1}]) returns a transformed representation of a first argument expr, treated as a subscripted or
unsubscripted key, using the alternative transform specified by the second argument intexpr in a
normalized form that can be used as an operand to the follows (]) or sorts-after (]]) operator such
that, if both operands are in the normalized form, the result is independent of alternative collation. If

Language

FIS
Page 30, March 11, 2020 FIS

the optional third argument is non-zero, $ZATRANSFORM() returns a reverse transform of the first
argument intended to restore a normalized form to the native M expr representation. By default, or
if the optional fourth argument is zero, $ZATRANSFORM()returns the transformation of expr using
standard M collation of numbers before strings, causing numbers to sort like strings; if the optional
third argument is non-zero, $ZATRANSFORM() treats all expressions as strings.(GTM-8427)

*
 $gtm_etrap and $gtm_trigger_etrap accept up to 8192 bytes and produce a

LOGTOOLONG message in the syslog when ignoring a value longer than 8192. Previously, process
initialization limited both environment variables to 4096 bytes and did not log any message for
an over-length $gtm_trigger_etrap. This issue was only observed in the GT.M development
environment, and was never reported by a user. (GTM-8559)

*
 $ZTRIGGER() operations that affect triggers executed in the same transaction work

as documented. Previously, in rare situations, transactions that performed $ZTRIGGER() operations
in some, but not all, retries and invoked a trigger affected by the $ZTRIGGER() operation in some,
but not all, retries could result in a TRIGDEFBAD or SIG-11. Also, trigger load operations in which
an error occurred only perform a validity check on trigger delete by name operations. Previously,
if an error occurred during a trigger load, a subsequent trigger delete by name operation resulted
in a TRIGDEFBAD if the name targeted a trigger installed as part of the current load operation. In
addition, concurrent MUPIP REORG works appropriately with GT.M triggers. Previously, in rare
situations, a concurrent MUPIP REORG could cause GT.M trigger operations to issue TRIGDEFBAD
errors. These issues were only observed in the GT.M development environment, and were never
reported by a user. (GTM-8568)

*
 $SELECT() does not pre-evaluate any expressions. A regression introduced in

V6.2-002A related to GTM-8376 resulted in inappropriate pre-evaluation of arguments in some
cases, especially when both FULL_BOOLEAN and gtm_side_effects modes were off. This caused
inappropriate behavior such as errors in $SELECT() formulations intended to prevent execution of
inappropriate indirection or $INCREMENT() acting on a global variable. (GTM-8572)

*
 When the argument of an IF command is a literal value or expression, the GT.M

compiler generates code to set $TEST appropriately and ignores the rest of the line. When the
argument of a command postconditional is a literal value or expression, the GT.M compiler
evaluates the postconditional and either generates code for an unconditional command or omits
generation for the command. Previously, the computation was performed at run time. Note that
literal postconditionals evaluating to 0 result in smaller object modules than literal postconditionals
evaluating to non-zero values. (GTM-8573)

*
 As part of compilation, GT.M optimizes unary operations, and binary operations,

where both operands are literals; cases where the first operand is an empty string, divide and
integer divide (/ or \) by zero (0) are exceptions. In addition, it treats $ZCHSET and $ZVERSION
as compile time constants. Please observe the following cautions: ensure you compile with the
same GT.M version, $gtm_chset, $gtm_local_collate, $gtm_patnumeric, $gtm_pattern_file and
$gtm_pattern_table values (or lack thereof) as those used to run your application, and use variable
operands, indirection or XECUTE for operands used with pattern match (?) or sorts-after (]]) if

Language

GTM V6.3-001
FIS

March 11, 2020, Page 31

the application changes the run time values controlled by those environment variables. Note that
the compiler detects a few errors at slightly different points which may change some messages,
hopefully for the better. In addition, this change prevents a possible segmentation violation (SIG-11)
in V6.3-000[A] when attempting to MUMPS -RUN of a routine with no current object module when
the routine uses ZWRITE. (GTM-8579)

*
 MERGE permits its target to hold the maximum number of subscripts supported by

GT.M (currently 31). Beginning with V6.1-000 the change associated with GTM-7867 could cause
inappropriate MAXNRSUBSCRIPTS errors when the source and the target were both global variables,
most likely when the source had many subscripts. The workaround was to MERGE the source into a
local variable and then MERGE from there to the actual target. (GTM-8583)

*
 $QLENGTH(), $QSUBSCRIPT() and $ZCOLLATE() use ZWRITE format to report the

namevalue in any NOCANONICNAME error. Previously, a <NUL> byte in the input resulted in a
GTMASSERT. (GTM-8584)

*
 GT.M defers certain timed operations while performing a $ZCONVERT(); previously,

the function could hang if interrupted by an timed operation that invoked non-reentrantsystem
memory management services. This issue was only observed in the GT.M development environment,
and was never reported by a user.(GTM-8590)

*
 Deviceparameters on the OPEN command for SOCKET device containing open

sockets can modify the ZFF and delimiters of the current socket; previously, these could only be
changed with a USE command. In addition, $KEY and $ZB for SOCKET devices appropriately return
UTF-8 representations of the characters; previously, if the device character set was UTF-16[BE|LE],
the terminator representations were inappropriately also encoded in UTF-16[BE|LE]. (GTM-8593)

*
 In M mode, $ASCII() of literal characters returns the correct value. In V6.3-000/-000A,

this returned an incorrect value, typically -1 (it worked correctly for ASCII literal characters, for
variable arguments, and in UTF-8 mode). Note that this is an edge case: instead of coding $ASCII()
of a literal, one would normally just use the value, e.g., 65 instead of $ASCII("A"), and furthermore,
the supported character set for literals in M programs is a subset of ASCII, whereas the issue affected
literals corresponding to the non-ASCII characters $CHAR(128) through $CHAR(255). (GTM-8595)

*
 ZSHOW "G" and $VIEW("GVSTAT") report a count BTD, which for database regions

that use the BG access method is the number of times a global buffer has transitioned from an clean
(unmodified) state to a dirty (modified) state. For database regions that use the MM access method,
BTD is zero. (GTM-8639)

*
 GT.M accepts NUL characters ($CHAR(0)) within literals used in indirection and

XECUTE; previously, it generated errors for that character. (GTM-8640)

*
GT.M now reduces the active memory usage when a process uses a large amount of

memory then subsequently uses a significantly reduced amount. Previously, active memory usage

Language

FIS
Page 32, March 11, 2020 FIS

was distributed across the whole memory segment. In addition, $VIEW("SPSIZE") now returns
three sizes (as comma separated values): the total amount of space allocated to the heap, amount
of heap space in use, and amount of heap space reserved. The reserved space is used to reduce the
active memory usage as mentioned above. GT.M now extends memory used for local variables more
frequently when garbage collection does not reclaim a significant amount of space.(GTM-8672)

*
 Name-level $ORDER() on globals maintains $REFERENCE analogously to other

$ORDER() invocations, that is: by reflecting the first argument unless a subsequent global reference
in the second argument takes precedence; previously, it left $REFERENCE empty except when the
second argument was a variable. This also applies to $ZPREVIOUS(), which is a deprecated way to do
a $ORDER(,-1). (GTM-8679)

*
 GT.M protects OPEN commands against the possibility they don't complete due to an

interrupt or device failure; previously, there was a very small window where external actions such
as <CTRL-C>, MUPIP INTRPT, or a device disconnect could leave a device partially set up, which
could cause a subsequent segmentation violation (SIG-11). This was only encountered in the GT.M
development environment and was never reported by a user. (GTM-8689)

* ZSHOW/ZWRITE work correctly even if they encounter a relatively rare heap management action.
Previously, these commands could terminate with a segmentation violation (SIG-11) in these rare
cases. This issue was only observed in the GT.M development environment, and was never reported
by a user. (GTM-8705)

GT.M V6.3-001
FIS

March 11, 2020, Page 33

System Administration

*
 MUPIP BACKUP and INTEG wait approximately one minute for any kill-in-progress

to clear. Previously, the times exceeded the documented one minute time by three times for INTEG
and an amount for BACKUP that was a function of the number of regions with kill-in-progress
indicators; abandoned indicators showed this issue most strongly. These problems were never
reported by users and were only seen in the GT.M development environment. (GTM-6598)

*
 GT.M flushes dirty journal and database buffers to disk in a timely manner in a

replicated environment. Additionally, the Source Server recovers from an unflushed journal buffer
situation by taking on the task of flushing, if needed, every eight (8) seconds while waiting for a
journal record in the journal file. It logs a "REPL_INFO : Source server did flush of journal file"
message to record such an event. Previously, it was possible in a rare case, involving journal file
switches and process exits, for the buffers to stay unflushed causing the Source Server to issue a
"REPL_WARN: Check for problems with journaling" alert every 50 seconds. The workaround for this
situation was to start a new process that did an update or shut the source server down. (GTM-7593)

*
GDE ADD, CHANGE and TEMPLATE for REGION objects recognize the -

[NO]LOCK_CRIT qualifier; MUPIP SET recognizes a -[NO]LCK_SHARES_DB_CRIT qualifier. Both
control whether LOCK actions share the same resource and management as the database or use a
separate resource and management. The GDE choice only affects database file creation with MUPIP
CREATE. GDE SHOW -ALL and -REGION, and DSE DUMP -FILEHEADER each display the choice,
which defaults to Sep(arate)/FALSE. Previously LOCK actions used the same resource and manager.
While we expect this to have either no effect or a positive effect on performance depending on the
application use patterns, it is different by default, so you should be aware of this change. (GTM-7729)

*
 MUPIP REPLICATE -CHANGELOG waits for up to twenty-five seconds for

confirmation from Source and Receiver Server processes that the change succeeded (it may not for a
variety of reasons). Previously, only MUPIP REPLICATE -RECEIVER -CHANGELOG waited; MUPIP
REPLICATE -SOURCE -CHANGELOG did not. (GTM-7837)

*
 MUPIP EXTRACT appropriately handles the case where a concurrent process

updates a spanning node that MUPIP EXTRACT is processing; previously, this situation could cause
a segmentation violation (SIG-11). Note that running an EXTRACT without -FREEZE and with
concurrent activity produces an inconsistent output (GTM-7922)

*
MUPIP FREEZE -ON -ONLINE freezes updates to the database file, but allows updates

to memory and journal files to continue. As for normal freezes, the Online Freeze is removed by a
MUPIP FREEZE -OFF. Online Freeze may only be used on regions with the BG access method.

In the Online Freeze state, GT.M prevents casual database updates from occurring, including
background flushing and timed epochs. However, certain conditions require updates to the database

System Administration

FIS
Page 34, March 11, 2020 FIS

file, including full database buffers, journal file switches, and database file extensions. The -
[NO]AUTORELEASE option may be used with the -ON option to select the behavior in these
conditions, with -AUTORELEASE being the default. If a GT.M process autoreleases an Online Freeze,
it sends an OFRZAUTOREL message to the operator log, all processes will be allowed to write to
the database file, and a subsequent MUPIP FREEZE -OFF will warn that an Online Freeze had been
removed. In this case any database copy or snapshot should be considered suspect and retried. If -
NOAUTORELEASE is specified, memory updates will be suspended rather than release the freeze. If a
process encounters this situation while holding a critical resource, it will send an OFRZCRITSTUCK
message to the operator log and wait, which will prevent other operations on the region. When the
Online Freeze is removed by a MUPIP FREEZE -OFF, the waiting process will send a OFRZCRITREL
message to the operator log.

Some commands which cannot run with an Online Freeze, e.g., MUPIP BACKUP and MUPIP
SET -JOURNAL, will either autorelease or issue an OFRZACTIVE error, depending on the -
[NO]AUTORELEASE option used to set the freeze. Other commands, e.g., MUPIP EXTEND, MUPIP
REORG -TRUNCATE, and MUPIP INTEG -ONLINE, will either autorelease or hang until the Online
Freeze is released.

A MUPIP FREEZE -OFF must always follow a MUPIP FREEZE -ON -ONLINE, even in the case of an
autorelease, to ensure that normal operations are resumed. In the case of an autorelease, the MUPIP
FREEZE -OFF command will report a OFRZNOTHELD warning.

To maximize the time that updates to memory may continue, MUPIP FREEZE -ON -ONLINE flushes
all dirty buffers to disk and performs a journal file switch, but it does not perform a database
extension. If a database file is nearly full, the user should consider doing a database file extension
before the Online Freeze. When the previous FREEZE operation was -ONLINE, a MUPIP FREEZE
-OFF flushes any dirty buffers to disk and performs a journal file switch. These operations are
performed in such a way as to minimize impact to processes doing memory updates, but they do
involve performing epochs, so there may be some delay to other processes.(GTM-8362)

*
 MUPIP replication servers accept changes to their log file destinations immediately

after the last change; previously, they occasionally required a wait between changes. (GTM-8373)

*
 MUPIP DUMPFHEAD [-FILE <file-name>][-REGION <region-list>] provides a

way to get substantially the same information as DSE DUMP -FILEHEADER, but in the same
format as provided by %PEEKBYNAME, and without connecting to database files. It is both lighter
weight than DSE and avoids the need to use DSE, for which operator error can have serious
consequences. The formatting is more regular than that of DSE. As MUPIP DUMPFHEAD does
not open shared memory, values reported for dynamic fields that are in shared memory may be
stale. Because MUPIP DUMPFHEAD is implemented in MUMPS, application code can call getfields^
%DUMPFHEAD(varname,dbfilename), where varname is a local variable name passed by reference,
and dbfilename is the name of a database file, to generate the records dumped by MUPIP. Note that
this facility supersedes ^%DSEWRAP, which is deprecated, is not updated or tested, and eventually
will be withdrawn. (GTM-8447)

System Administration

GTM V6.3-001
FIS

March 11, 2020, Page 35

*
 MUPIP LOAD -FORMAT=BINARY validates the keys in the extract records and

reports any errors it detects before skipping the bad record and any following records in the block.
Previously, LOAD of a binary extract did not validate incoming keys. (GTM-8542)

*
 The Source Server handles reconnects after errors gracefully. Previously the Source

Server could exit with a REPLBRKNTRANs error after an error like REPLNOTLS that causes the
Source and Receiver Servers to disconnect in middle of renegotiating the replication starting point.
This issue was identified in FIS testing and has not been reported by any customers. (GTM-8547)

*
 MUPIP REORG -ENCRYPT works correctly when reissued after a prior invocation

of the same command was interrupted. Previously, if a MUPIP REORG -TRUNCATE was run in
between and did truncate the database, it was possible for the reissued MUPIP REORG -ENCRYPT to
incorrectly succeed even though it did not finish the (re)encryption. This was particularly evident if
one ran a MUPIP SET -ENCRYPTIONCOMPLETE command on the same database which correctly
indicated the encryption as incomplete. This issue was only observed in the GT.M development
environment, and was never reported by a user. A workaround for this was to run a MUPIP EXTEND
on the database and reissue the MUPIP REORG -ENCRYPT. (GTM-8564)

*
 Enabling sync_io for journaling works correctly on XFS filesystems configured with

4KiB sector sizes. Previously, the Source Server could experience a REPLFILIOERR error with the
message "Error in reading jfh in update_eof_addr" when reading from journal files. (GTM-8582)

*
 MUPIP JOURNAL -ROLLBACK -FORWARD correctly rolls the database forward

in the case one region has a journal file with very limited update activity (less duration than the
epoch interval of that region). Previously, it was possible, in the unlikely case of a crash (where
the journal files were not cleanly shutdown) where a region had only a single epoch matching
the safe restore time determined across all regions, for ROLLBACK to inappropriately set the
database file header as if it had restored updates beyond those it actually restored, which could
cause a subsequent replication restart to miss updates. This issue was only observed in the GT.M
development environment, and was never reported by a user. (GTM-8599)

*
 The error messages for JNLTRANSLSS and JNLTRANSGTR now include the

transaction numbers in the database file header and journal file header. The accompanying
JNLOPNERR prints the name of the database and journal files. Previously, when issued alongside a
JNLSENDOPER message, JNLOPNERR missed information about the database file, and there were
no transaction numbers for JNLTRANSLSS or JNLTRANSGTR. The error JNLREADEOF omits the
journal file name as the accompanying JNLEXTEND message prints this information.[/p][p]The error
messages JNLBADRECFMT, JNLVSIZE, and CRYPTJNLMISMATCH include context information
when a process fails to open a journal file for thefirst time. Previously, these error messages did not
include some or all of the context information. (GTM-8609)

*
 The Receiver Server handles unusual protocol messages appropriately. Previously,

in extremely rare circumstance, the Receiver Server could mishandle such a message and
terminate with a segmentation violation or REPLTRANS2BIG error preceded by numerous

System Administration

FIS
Page 36, March 11, 2020 FIS

"Received UNKNOWN message" messages. This issue was only observed in the GT.M development
environment, and was never reported by a user. (GTM-8610)

*
 MUPIP LOAD does not terminate abnormally with a segmentation fault (SIG-11)

when delivering the MAXSTRLEN error nor does MUPIP LOAD treat a 12 byte header as a
MAXSTRLEN error. Previously, a 12 byte header line in a GO or ZWRITE extract could cause GT.M
to terminate abnormally with a segmentation fault (SIG-11). The workaround for the short header
was to edit it in order to pad the length. (GTM-8612)

*
 The REQROLLBACK message indicates that required -ROLLBACK also requires the -

NOONLINE qualifier.(GTM-8614)

*
 MUPIP RESTORE issues an IOEOF error and exits with a non-zero status when

supplied with a truncated backup file. Previously, it used to prompt for the next volume to be
mounted and later issue a SYSTEM-E-UNKNOWN error and incorrectly exit with a zero status
indicating normal exit. Additionally, it cleans up database semaphore ipcs in case of errors;
previously left two semaphores per database in case of errors.(GTM-8629)

*
 GT.M considers available process groups when determining permissions based on

group membership for IPCs and files, like journals and snapshot files. Previously, when GT.M failed
to determine group membership, GT.M inappropriately removed owner access to the IPCs that it
created resulting either a PERMGENFAIL error or DBFILERR error followed by the supplemental text
"Error with database control semctl SETVAL". (GTM-8654)

*
 The GT.M reference encryption plugin is compatible with OpenSSL 1.1.0. Previously,

the plugin would not compile with OpenSSL 1.1.0. (GTM-8656)

*
 GT.M replication appropriately handles the case where a receiving Supplementary

Instance (P) connects to a non-supplementary Originating Instance (A) for the first time and then
reconnects with no intervening updates. Previously, if the A->P connection occurred twice with no
intervening update, replication from P to another receiving Supplementary Instance (Q) failed with a
STRMSEQMISMTCH error. (GTM-8657)

*
 GT.M makes more information available to system profiling tools such as perf.

[x86_64 Linux] (GTM-8660)

*
 The GT.M reference encryption plugin Makefile copies the pinentry.m routine into

$gtm_dist/plugin/gtmcrypt and the GT.M reference encryption plugin pinentry program includes
$gtm_dist/plugin/r in the gtmroutines search path. Previously, if the encryption plug-in source
archive was not extracted in $gtm_dist/plugin/gtmcrypt, the custom pinentry program failed to load
the pinentry routine and the user would be prompted via the system default pinentry program.The
GT.M Encryption plugin properly compiles when GT.M is installed without Unicode support.
Previously, this would result in the Makefile exiting with an error. The GT.M encryption plugin

https://en.wikipedia.org/wiki/Perf_%28Linux%29

System Administration

GTM V6.3-001
FIS

March 11, 2020, Page 37

includes support for loopback pinentry mode (available starting with GnuPG 2.1.12) which simplifies
unattended passphrase handling.(GTM-8668)

GTM V6.3-001
Page 38, March 11, 2020 FIS

GT.M V6.3-001
FIS

March 11, 2020, Page 39

Other

*
 The GT.M compiler accepts input with <CR><LF> line termination (common on some

non-POSIX Operating Systems); previously, it did not. Our thanks to the membership of the May
2016 "Hacking GT.M" workshop for this change. (GTM-4283)

*
 Update Process Reader Helpers operate correctly. Previously, under rare conditions

the Reader Helper would encounter a segmentation violation (SIG-11). This was only encountered in
the GT.M development environment, and was never reported by a user. (GTM-6085)

*
 Code using literals on Linux on x86_64 is faster, and the generated object file is

smaller than previously. Compilation is also faster, which should, in turn, speed up operations using
indirection and XECUTE. As with any performance enhancement, actual benefit will vary, depending
on the extent to which application code uses constructs that benefit from this change. [x86_64 Linux]
(GTM-6332)

*
 The gtmsecshr wrapper on AIX uses the standard system timezone taken from /etc/

environment for the timestamps of any syslog entries it generates. It also passes this timezone on
to gtmsecshr to use for its entries as well. Previously, syslog timestamps from the AIX gtmsecshr
wrapper could be either in the timezone of the process that started gtmsecshr or UTC, depending on
whether environment variables had been cleared at the time of the error or not. [AIX] (GTM-7778)

*
 Critical section acquitions are slightly more efficient. [x86_64 Linux] (GTM-8430)

*
 GT.M manages time-related tasks in a more lightweight fashion. On heavily loaded

systems with large numbers of processes, this should reduce the number of interrupts and context
switches that the operating system needs to process. In addition, GT.M processes time-related tasks
in a timely fashion. Previously, in rare conditions, timed operations (e.g., HANG) could be delayed
up to eight seconds. This issue was only observed in the GT.M development environment, and was
never reported by a user. (GTM-8544)

*
 A GT.M process functions correctly when its M data heap exceeds 2GiB. Previously,

such a process could experience damage to internal data structures, leading to incorrect process
behavior including process termination with segmentation violations (SIG-11). This issue was only
observed in the GT.M development environment, and was never reported by a user. (GTM-8561)

*
 The GT.M configure installation script always creates the plug-in routine source and

object file directories. Previously, when installing over an existing directory the installation script did
not create the plug-in routine source and object file directories. (GTM-8562)

*
 When directed to install GT.M with UTF-8 support, the configure script defaults to

the C.UTF-8 locale when systems have none defined. Previously, the configure script terminated

Other

FIS
Page 40, March 11, 2020 FIS

prematurely on such a condition. This was only seen by users building GT.M from source in a
restricted build environment. (GTM-8567)

*
 When starting up, the replication Receiver Server only issues a NOMORESEMCNT

message to the syslog if it is the first process to determine that more than 32Ki GT.M processes have
run in that instance. Previously, in very rare cases, it could inappropriately log a duplicate message.
This issue was only observed in the GT.M development environment, and was never reported by a
user. (GTM-8569)

*
 The GT.M compiler reduces the size of object modules by not placing literals in an

object module once the compilation eliminates a need for them. Previously, it sometimes left obsolete
literals in the object files; in V6.3-000[A], GTM-7762 made this a more significant issue. (GTM-8570)

*
 ^%GI appropriately handles empty string data values in GO format input. In V6.3-000

and V6.3-000A, ^%GI ignored such input, leading to incorrect loads. The workaround was to use
ZWR format or MUPIP LOAD. (GTM-8571)

*
 ^%PEEKBYNAME() handles cases where the type of data it is to access is an array

of known types by returning a comma delimited list of the array elements; for example, $$^
%PEEKBYNAME("sgmnt_data.tp_cdb_sc_blkmod",base) returns a string in the form "0,0,0,0,0,0,0,0"
because the arguments identify an array of 8 integers (type int). Previously, this kind of invocation
produced a BADZPEEKFMT error. (GTM-8578)

*
 GT.M briefly defers certain operations while processing character input; previously,

the non-reentrant system memory management services used in character-based input could hang a
process if their timed operations also invoked memory management services. (GTM-8598)

*
 MUPIP JOURNAL accepts multiple EOF records in the same journal file. Multiple EOF

records only occur when the last process to halt out of a journaled database terminates abnormally
just before cleanly shutting down the journal file. Note that FIS strongly recommends against
using kill -9 on any GT.M process performing database updates. Previously, MUPIP JOURNAL
produced a GTM-E-JNLUNXPCTERR error when it encountered multiple EOF records in a journal
file. (GTM-8602)

*
 GT.M prevents certain timed operations during external calls. Previously, in an

environment using encrypted databases,an external call could cause the process to hang due to an
invocation of non-reentrant memory management system services also invoked by the encryption
plug-in. (GTM-8615)

* The gtm_coredump_filter environment variable specifies the mappings of the process address space
for a GT.M process, with the bits having the same meaning as those specified for /proc/<pid>/
coredump_filter in "man 5 core". If unspecified, GT.M uses a value of 0x73; a value of -1 prevents
GT.M from modifying the coredump_filter value. A running process can change its coredump_filter
by writing to the file /proc/<pid /coredump_filter, and can query the current value by reading that
file. [Linux x86_64] (GTM-8632)

Other

GTM V6.3-001
FIS

March 11, 2020, Page 41

*
 Processes handle a large volume of TP updates appropriately; previously, a

long-running process, such as an Update Process, adding new global nodes could eventually
inappropriately terminate with a GTMASSERT2. (GTM-8637)

*
 GT.M appropriately handles the case of a process receiving a MUPIP STOP while

another process has recently been performing a MUPIP REORG -ENCRYPT to change the encryption
keys. In V6.3-000[A] this combination could rarely cause the stopped process to terminate with a
GTMASSERT2 error. This caused no problems for the database. This issue was only observed in the
GT.M development environment, and was never reported by a user. (GTM-8642)

*
 GT.M more accurately maintains the count of the number of processes attached to

a database file $$^%PEEKBYNAME("node_local.ref_cnt",<region>) or "Reference count" in DSE
DUMP -FILE output. Note that GT.M does not rely on this field, which exists to supply operational
information to the user, but which may be inaccurate if processes are subject to kill - 9 - something
that FIS recommends against and that GT.M does not guard against. Previously, in case the database
has the quick-rundown mode enabled (MUPIP SET -QDBRUNDOWN), this counter could become
inaccurate even without interference from kill -9. (GTM-8645)

*
 When GT.M exits with a fatal error, such as GTM-F-MEMORY, it cleans up any empty

file it was in the process of creating at the time of the failure. This applies to GT.M OPEN, DSE OPEN
and a number of MUPIP functions which create files. Previously, this unusual situation left an empty
file and in some cases the process terminated with a segmentation fault (SIG-11). (GTM-8659)

*
 DSE FIND -KEY reports the correct path leading to the input key. For versions

V6.0-000 to V6.3-000A, due to a regression introduced by GTM-6341, it sometimes reported an
incorrect Global tree path if the input key is not found in the database file. (GTM-8676)

*
 ^%TI works as documented; previously, it rejected some documented forms.

(GTM-8686)

GTM V6.3-001
Page 42, March 11, 2020 FIS

GT.M V6.3-001
FIS

March 11, 2020, Page 43

More Information

Additional information for GTM-6838 - Asynchronous database IO

Released as field test grade functionality in a production release, asynchronous IO is an option for
database segments using the BG access method; previously GT.M performed only synchronous I/O
through the file system cache.

* $$^%PEEKBYNAME("sgmnt_data.asyncio",<region-name>) - returns TRUE (1) if the region has
asynchronous I/O enabled and FALSE (0) if it does not.

* $$^%PEEKBYNAME("node_local.wcs_wip_lvl",<region-name>) - returns the number of blocks
for which GT.M has issued writes that it has not yet recognized as complete.

DSE DUMP -FILEHEADER reports the above information for a region as follows:

* Async IO - whether AsyncIO is ON or OFF for the database

* WIP queue cache blocks - the number of blocks for which GT.M has issued writes that it has not
yet recognized as complete

GDE ADD, CHANGE and TEMPLATE commands accept the following qualifier for SEGMENT objects
with an access method of BG:

* -[NO]ASYNCIO specifies whether to use asynchronous I/O for a database file; the default is
NOASYNCIO.

MUPIP SET recognizes the -[NO]ASYNCIO qualifier. As there are two MUPIP SET qualifiers
beginning with "A", MUPIP no longer recognizes "-A" to specify "-ACCESS_METHOD" - please use the
recommended minimum of four characters (-ACCE). Also, when a MUPIP SET command changes the
database access method, it reports the change; previously it made the change silently.

Database files have an empty database block logically after the last usable database block; previously
this location had an empty 512 byte block. Because of this change, downgrading a database
using V6.3-001 or later for use by a version prior to V6.3-001 requires a MUPIP DOWNGRADE -
VERSION=V63000A. This syntax uses V63000A to specify DOWNGRADE change the terminating
block from having the current size of a database block to using a 512-byte size used by all releases up to
V6.3-000A, and should be used regardless of which release older than V6.3-001 you plan to use after the
DOWNGRADE.

For Linux x86_64, the gtm_aio_nr_events environment variable controls the number of structures a
process has per global directory to manage asynchronous writes, and therefore determines the number
of concurrent writes a process can manage across all regions within a global directory. If not specified,
the value controlled by gtm_aio_nr_events defaults to 128. If a process encounters a situation where it
needs to perform an asynchronous write, but has no available slots with which to manage an additional
one, it either falls back to synchronous writing if the write is blocking other actions, and otherwise
defers the write until a slot becomes available as other writes complete. Linux allocates the structures
on a system-wide basis with the setting of /proc/sys/fs/aio-max-nr. Therefore you should configure

More Information Additional information for GTM-6838 -
Asynchronous database IO

FIS
Page 44, March 11, 2020 FIS

this parameter to account for the needs (as determined by gtm_aio_nr_events or the default) of all
processes using asynchronous I/O. When processes use multiple global directories with asynchronous
I/O, their need for the system resources increases accordingly. For example, if an environment runs
10,000 processes each of which open two global directories and /proc/sys/fs/aio-max-nr is set to a value
of 200,000 then gtm_aio_nr_events needs to be set to a value <= 200,000 / (10,000 * 2) = 10. Conversely
if gtm_aio_nr_events is set to a value of 20, then aio-max-nr needs to be bumped up to (10,000 * 2 * 20)
= 400,000. GT.M captures the number of errors encountered when attempting to write database blocks
for a region, and, barring problems with the storage subsystem, hitting an asynchronous write limit
would constitute primary (probably only) contribution to that value, which you can access with the
following:

* $$^%PEEKBYNAME("sgmnt_data.wcs_wterror_invoked_cntr",<region>)

The performance characteristics of asynchronous IO are likely to be quite different from the traditional
sequential IO. Although asynchronous IO in theory should be more efficient than synchronous IO by
eliminating the need for the UNIX file buffer cache and eliminating certain filesystem locks, in practice
asynchronous IO is likely to emerge from the starting gate under-performing synchronous IO because
of the years that synchronous IO has been the common IO model operating systems and filesystems
have had used by applications. So, you should anticipate extensive benchmarking and tuning for your
application to achieve the best performance it can with asynchronous IO. Some notes and observations
that we have to share:

* As asynchronous IO dispenses with the UNIX file buffer cache, GT.M global buffers are the sole
caching mechanism. To make asynchronous IO perform well, you will likely need to increase the
number of global buffers considerably. With GT.M's limit of 2GiB per shared memory segment, a
database segment with 4KiB blocks has a limit of almost two million global buffers.

* A large number of global buffers potentially implies a large number of dirty global buffers
to be flushed at an epoch. You should investigate the impact on application response time of
GT.M epoch tapering vs. turning off epoch tapering and using a separate stand-alone process
that executes a line of code such as: for set x="" for set x=$view("gvnext",x) quit:""=x view
"dbflush":x,"dbsync":x,"epoch":x hang n where n is a number that causes each region to be
flushed at an appropriate interval. If you choose this option, remember to turn off epoch tapering,
and to set the epoch interval in the file header to be large enough to prevent application processes
from performing epochs, and consider scripted timely switching of journal files by other than
application processes (switching journal files involves an epoch).

* On AIX, consider mounting file systems with the CIO mount option. The CIO mount option drops
support for the file buffer cache (unused by asynchronous IO), and also eliminates a lock that is a
potential bottleneck to GT.M performance on the AIX jfs2 filesystem.

* Limited experience with solid-state storage (SSDs) on Linux in the GT.M development environment
suggests a considerable difference in asynchronous IO performance on the same underlying
hardware, with f2fs performing better than xfs, which in turn performed better than ext4.

* On Linux, which does not have a mount option such as AIX's CIO, even when GT.M uses
asynchronous IO, a command like cp (used under the covers by MUPIP BACKUP) can still use
synchronous IO. Owing to what we expect is a race condition between the two IO models, MUPIP
BACKUP -DATABASE on Linux has in our testing on rare occasions created backups with database

Additional information for GTM-6699 - Monitoring of
shared database statistics

More Information

GTM V6.3-001
FIS

March 11, 2020, Page 45

errors in them. The errors were observed most often with an ext4 filesystem, less frequently on
xfs, and never on f2fs; however, we must treat it as if all filesystems are potentially vulnerable. FIS
recommends using MUPIP BACKUP -BYTESTREAM if your application uses asynchronous IO.

In GT.M development, we have not benchmarked asynchronous IO on the types of storage commonly
used for enterprise scale applications (as workloads vary widely, we do not routinely benchmark
workloads in development). Please consider the above observations in this light.

Additional information for GTM-6699 - Monitoring of shared database
statistics

GT.M provides a fast and efficient mechanism for processes to share their database access statistics
for other processes to monitor. Processes opt in or out with the VIEW "[NO]STATSHARE" command,
defaulting to VIEW "NOSTATSHARE". At process startup, a value of 1, or any case-independent string
or leading substrings of "TRUE" or "YES" in the environment variable gtm_statshare provides an initial
setting of VIEW "STATSHARE". When a process changes whether it is opting in or out, there is no
change to the output of a ZSHOW "G" within that process. GT.M does not permit this keyword of the
VIEW command within a TP transaction. Monitoring the statistics of other processes does not require a
process to opt-in to sharing its own statistics.

Processes that have opted-in share their statistics as binary data in database files located in the
directory specified by the gtm_statsdir environment variable. If you do not explicitly define this
environment variable for a process, GT.M defines this to the evaluation of $gtm_tmp, which defaults
to /tmp. All processes that share statistics MUST use the same value for $gtm_statsdir. FIS suggests
that you point gtm_statsdir at a tmpfs or ramfs on Linux, and a filesystem on a ram disk on AIX. These
database files have a name derived from the user defined database file name and a .gst extension.
They are not usable as normal database files by application code, except to read statistics. GT.M
automatically creates and deletes them as needed. Under normal operation, applications do not need to
manage them explicitly. The mapping of ^%YGS to statistics database files is managed by GT.M within
global directories, transparently to applications. As described below, the ^%YGBLSTAT utility program
gathers and reports statistics from nodes of ^%YGS(region,pid).

Labels in the ^%YGBLSTAT utility program gather and report statistics, presenting both a high level
API and a low level API. While we intend to preserve backward compatibility of the high level API
in future GT.M releases, we may change the low level API if and when we change the underlying
implementation. A call to a label in ^%YGBLSTAT does not in any way slow the execution of other
processes. Because the gathering of statistics is not instantaneous, and processes concurrently open
database files as well as close them on exit, and may turn their participation in statistics monitoring on
and off, statistics typically do not show a single moment in time, as statistics change during the short
time interval over which they are gathered.

In the following, an omitted response or argument is equivalent to "*".

The high level API implemented by $$STAT^%YGBLSTAT(expr1[,expr2[,expr3[,expr4]]]) reports global
variable statistics and has arguments as follows:

* expr1 (treated as an intexpr - coercing an expr to an integer is equivalent to +(expr)) specifies the
PID of a process on which to report; if such a process does not exist, has not opted in, or no database

More Information Additional information for GTM-6699 - Monitoring of
shared database statistics

FIS
Page 46, March 11, 2020 FIS

file mapped by expr3 and expr4 includes statistics for such a process, the function returns an empty
string. Specifying "*" as the value of expr1 returns the aggregate statistic(s) specified by expr2 for
all processes whose statistics are included in the database file(s) of the region(s) specified by expr4
within the global directory specified by expr3, or the empty string if there are no statistics to report
for any process.

* expr2 specifies the statistic(s) to report as follows:

* If expr2 is a single statistic, e.g., "LKF", the function returns the requested value as an integer

* If expr2 is a series of comma-separated names of statistics, e.g., "DTA,GET", the function returns a
string with each requested statistic in ZSHOW "G" order, e.g., "GET:3289,DTA:598...", rather than
in the order in which they appear within the specifying argument.

* If expr2 is omitted, or consists of the string "*", the return value reports all statistics formatted like
the ZSHOW "G" statistics for a single region, e.g., "SET:563,KIL:39,GET:3289,DTA:598...

* expr3 specifies a global directory file name (producing a ZGBLDIRACC error if such a global
directory is not accessible); if unspecified, the utility defaults this value to $ZGBLDIR of the invoking
process.

* expr4 specifies the name of a region (producing a NOREGION error if no such region exists in the
global directory expr3); if expr4 is unspecified, or the string "*", the function returns statistics for
the process or processes summed across all regions of the global directory explicitly or implicitly
specified by expr3.

When invoked as an interactive utility program using DO, ^%YGBLSTAT, prompts for:

* the process id (respond * for all processes)

* a comma separated list of the statistics desired (respond * for all statistics)

* the global directory to use

* region (respond * to report statistics summed across all regions).

When invoked from a shell, the command line is: mumps -run %YGBLSTAT [−−help] [−−pid pidlist] [−
−reg reglist] [−−stat statlist] where:

* pidlist is a single pid, or "*" (quoted to protect it from expansion by the shell) for all processes
currently sharing statistics.

* reglist is a single region name in the global directory specified by $gtmgbldir, or "*" to report
statistics summed across all regions

* statlist is one or more comma separated statistics, or "*"

* When statlist specifies a list of statistics, %YGBLSTAT reports them in the same order in which
ZSHOW "G" reports those statistics, rather than in the order in which they appear within the
specifying argument.

Additional information for GTM-6699 - Monitoring of
shared database statistics

More Information

GTM V6.3-001
FIS

March 11, 2020, Page 47

$$ORDERPID^%YGBLSTAT(expr1[,expr2[,expr3]]) reports PIDs of processes that have opted in and
recorded statistics. Its arguments are as follows:

* expr1 coerced to an intexpr specifies a PID such that the function returns the next PID after expr1
of a process that has opted in to be monitored and which has recorded statistics in any region(s)
specified by expr3 from the global directory specified by expr2, or the empty string if expr1 is the
last PID. A value of the empty string ("") for expr1 returns the first monitored PID meeting the
specifications in expr2 and expr3.

* expr2 specifies a global directory file name (producing a ZGBLDIRACC error if such a global
directory is not accessible); if unspecified or the empty string, the utility defaults this value to the
$ZGBLDIR of the invoking process.

* expr3 evaluates to the name of a region (producing a NOREGION error if no such region exists in the
global directory specified by expr2); if expr3 is unspecified, or the string "*", the function returns the
PID for the next process after expr1 for any region of the global directory specified by expr2.

* Applications should not rely on GT.M returning the PIDs in a sorted or other predictable order: the
order in which PIDs are returned is at the discretion of the implementation, and may change from
release to release.

The low level API implemented by $$SHOW^%YGBLSTAT(glvn[,strexp]) reports raw statistics of a
process and has arguments as follows:

* glvn specifies a node containing raw statistics for a process

* the raw data is stored in uniquely managed database files as nodes of ^%YGS(expr1,expr2) where:

* expr1 evaluates to the name of a region in the current global directory (or the global directory of
an extended reference), producing an UNDEF error, or, in NOUNDEF mode, an empty string, if no
such region exists

* expr2 coerced to an intexpr is a PID.

* The data in the node is a series of binary bytes which are the raw statistics shared by a process

* strexp specifies statistics to report with the same interpretation as the expr2 parameter of $$STAT^
%YGBLSTAT.

* $$SHOW^%YGBLSTAT() reports a zero value for any statistic whose name is unrecognized. This
facilitates application code written for a version of GT.M that includes a statistic, but which also
needs to run on an earlier version without that statistic.

* Because a process sharing statistics can exit or turn off sharing, deleting its node, between the time a
monitoring process decides to access its statistics, e.g., finding it using $$ORDERPID^%YGBLSTAT()
or $ORDER(^%YGS()), and the time the monitoring process performs the database access, any direct
access to ^%YGBLSTAT should be wrapped in $GET().

* As raw statistics are binary data, processes in UTF-8 mode that gather and monitor statistics should
use code with appropriate BADCHAR handling. Note that processes sharing statistics and processes

More Information Additional information for GTM-6699 - Monitoring of
shared database statistics

FIS
Page 48, March 11, 2020 FIS

gathering statistics for monitoring and reporting need not run in the same UTF-8/M mode. As
statistics sharing by processes is identical in M and UTF-8 modes, FIS suggests that processes
gathering statistics run in M mode

Except as documented here for sharing and gathering statistics, FIS strongly recommends that
applications not access statistics database files unless otherwise directed by your GT.M support
channel.

As they do for unshared statistics, shared statistics reflect all database actions for a TP transaction,
including those during RESTARTs. Because the sharing of statistics is not a database operation
that modifies the relative time stamps GT.M uses to maintain serialized operation preserving the
Consistency and Isolation aspects of ACID operation, statistics generated by a sharing process inside
a transaction (TSTART/TCOMMIT) do not cause transaction restarts as a consequence of updates to
shared statistics by other processes.

DSE DUMP -FILEHEADER reports the following information for a region:

* DB is auto-created TRUE or FALSE to indicate whether the database file is automatically created

* DB shares gvstats TRUE or FALSE to indicate whether the database supports sharing of statistics

By default, DSE does not map the regions used to store shared GVSTAT information, however the -
STATS qualifier on a FIND -REGION=<region-name> command directs DSE to any existing statistics
database associated with the named region. Note that these special purpose regions have a lower-case
name that corresponds to their actual upper-case region name, and their databases tend not to exist
unless they are in current use.

GDE, ADD. CHANGE and TEMPLATE commands accept the following qualifiers for REGION objects:

* -[NO]AUTODB specifies whether GT.M should automatically create the associated database file if
it does not exist when a process first attempts to access it; it defaults to NOAUTODB. This feature
is not intended to replace MUPIP CREATE, but rather permit somewhat easier management of
temporary databases or process private databases.

* -[NO]STATS specifies whether GT.M should permit statistics sharing for this region; it defaults to
STATS. This characteristic permits operational exclusion of statistics sharing for a region.

Any attempt to map globals with names starting with %Y produces a NOPERCENTY error, as this
namespace is reserved by the standard for implementation use.

MUPIP commands with the exception of INTEG, SET and RUNDOWN do not apply to statistic
databases; that is they are not available for operations such as BACKUP, EXTRACT or LOAD.

* INTEG recognizes the -STATS qualifier which directs it to integrity check any active statistics
database associated with the region(s) specified for the command.

* RUNDOWN -FILE can be directed to a statistics database file and works even if the corresponding
actual database file does not exist. MUPIP RUNDOWN with no argument removes any statistics
database file resources associated with actual database file resources it can remove.

Additional information for GTM-6699 - Monitoring of
shared database statistics

More Information

GTM V6.3-001
FIS

March 11, 2020, Page 49

* SET recognizes the -[NO]STATS qualifier. Please refer to the GDE description above for a description
of these database characteristics.

GTM V6.3-001
Page 50, March 11, 2020 FIS

GT.M V6.3-001
FIS

March 11, 2020, Page 51

Error and Other Messages

CHANGELOGINTERVAL

CHANGELOGINTERVAL, ssss Server now logging to ffff with a IIII second interval

MUPIP Information: This message confirms a change to a replication server (ssss) by showing the
current log file (ffff) and log interval (IIII)

Action: None Required

CRYPTNOMM

CRYPTNOMM, ffff is an encrypted database. Cannot support MM access method.

MUPIP Error: This error is triggered by an attempt to mark an MM database as encrypted with GDE
or to switch an encrypted database from BG to MM with MUPIP SET. The MM access method is not
supported for encrypted databases.

Action: Use the BG access method for encrypted files.

DBDUPNULCOL

DBDUPNULCOL, Discarding kkkk=vvvv key due to duplicate null collation record

MUPIP Error: This idicates that MUPIP LOAD discarded a key-value pair from a binary EXTRACT
because it contained conflicting empty string subscripts. This can only happen is someone changes the
"Null" subscript representation used by a database while it contains such subscripts. FIS recommends
against such a change.

Action: Determine whether the described data has value and restore it, typically with a SET command,
appropriately.

DBMISALIGN

DBMISALIGN, Database file xxxx has yyyy blocks which does not match alignment rules.
Reconstruct the database from a backup or extend it by at least zzzz blocks.

MUPIP Error: This is an auxiliary message, and is preceded by a primary message.

Action: Follow the primary message description and action as specified in this manual.

DBNULCOL

DBNULCOL, NULL collation representation for record rrrr in block bbbb is RRRR which differs from
the database file header settings of hhhh

Error and Other Messages DBTOTBLK

FIS
Page 52, March 11, 2020 FIS

DSE/MUPIP/Run Time Error: This indicates the database contains a record rrrr with an empty subscript
("Null" subscript) representation RRRR in block bbbb that is incompatible with the current setting hhhh
for such representation. This can only arise if someone changes the setting for the database while it
contains one or more such subscripts. FIS recommends against making such a change. This message can
originate from MUPIP INTEG, DSE INTEG or VIEW "GDSCERT"

Action: Use the record and block information to remove the problematic record with DSE and restore
the data appropriately, typically with a SET command. Note that the record and block of the record
many change due to ongoing updates, so this operation requires great care and familiarity with DSE.

DBTOTBLK

DBTOTBLK, File header indicates total blocks is tttt but file size indicates total blocks would be eeee

MUPIP Information: This is an auxiliary message, and is preceded by a primary message.

Action: Follow the primary message description and action as specified in this manual.

GDECRYPTNOMM

GDECRYPTNOMM, ssss segment has encryption turned on. Cannot support MM access method

GDE Error: This error is triggered by an attempt to mark an MM database segment ssss as encrypted
with GDE. The MM access method is not supported for encrypted databases.

Action: Use the BG access method for encrypted files.

GDINVALID

GDINVALID, Unrecognized Global Directory file format: ffff, expected label: eeee, found: bbbb

Run Time Error: This indicates that a version of the global directory file ffff does not match with the
version expected by GT.M. The file might have been created by an incompatible GT.M version. If the
text of eeee or bbbb contain non-graphic characters, GT.M replaces each of them with a period (.).

Action: Compare the labels eeee and bbbb. If the global directory was created by an earlier GT.M
version, upgrade the file by loading and then saving the file using the GDE of the new GT.M version.

INVADDRSPEC

INVADDRSPEC, Invalid IP address specification

Run Time Error: This indicates the IP address and/or port specified is not in a valid format.

Action: Verify and correct the IP address and port.

INVLINKTMPDIR Error and Other Messages

GTM V6.3-001
FIS

March 11, 2020, Page 53

INVLINKTMPDIR

INVLINKTMPDIR, Value for $gtm_linktmpdir is either not found or not a directory: dddd

Run Time Error: Indicates the process cannot access directory dddd, which it needs in order to do auto-
relink as specified by its $ZROUTINES; the directory may not exist as a directory or the process lacks
authorization to the directory.

Action: The directory specification comes from $gtm_linktmpdir if it is defined, otherwise from
$gtm_tmp if that is defined; otherwise it defaults to the system temporary directory, typically /tmp.
Either correct the environment variable definition or ensure directory dddd is appropriately set up.
Note that all users of auto-relink for a directory normally need to use the same temporary directory for
their relink control files.

INVMEMRESRV

INVMEMRESRV, Could not allocate GT.M memory reserve (xxxx)

Images Warning: GT.M could not allocate xxxx KiB of reserve memory for handling and reporting out-
of-memory conditions. Examine the subsequent messages for more information on why the memory
reserve allocation failed.

Action: If $gtm_memory_reserve is too high, specify a lower value and retry. If the value is reasonable,
determine what else is preventing the allocation (process or system limits or usage by other system
components). Note that GT.M uses this reserve only when a process runs out of memory so it mostly
requires address space and almost never requires actual memory.

IOEOF

IOEOF, Attempt to read past an end-of-file

Run Time/MUPIP Error: This indicates that a READ command for a run-time system or a MUPIP
command attempted to move past an end-of-file.

Action: Verify that the $ZEOF special variable is tested by the function betwee READs or that an
EXCEPTION code string is assigned to handle EOFs. Alternatively, have your $ETRAP (or $ZTRAP)
error handling deal with this error. The USE command has a REWIND deviceparameter that allows you
to read from the beginning of the file without having to CLOSE and OPEN again, which may facilitate
recovery from this error. Attempting to READ from a non-existent file not opened READONLY also
causes this error. In the event of a MUPIP error, make sure the file being read is not corrupted.

JOBLVN2LONG

JOBLVN2LONG, The zwrite representation of a local variable transferred to a JOB'd process is too
long. The zwrite representation cannot exceed MMMM. Encountered size: LLLL

Run Time Error: This error indicates that the total length LLLL (in bytes) of the ZWRITE representation
of the variable name, subscripts, and value exceeds the maximum MMMM supported by the

Error and Other Messages JOBLVNDETAIL

FIS
Page 54, March 11, 2020 FIS

PASSCURLVN facility. Note that the ZWRITE representation contains the appropriate punctuation
for any subscripts, the equal-sign and replaces any non-graphic characters with their $[Z]CHAR()
representations.

Action: Consider whether the JOB'd process needs the variable(s) that exceed the maximum for
PASSCURLVN - if not, they can be taken out of scope before the JOB command. Alternatively, pass
them using global variables or a local SOCKET device.

JOBLVNDETAIL

Last used version: V6.2-003

JOBLVNDETAIL, The zwrite representation of a local variable transferred to a JOB'd process is too
long. The zwrite representation cannot exceed XXXX. Encountered size: YYYY

Run Time Error: The length of the zwrite representation of a local, (including the quotes, the '=',
concatenate operator "_", and "$[Z]C()") has the length of YYYY which exceeds the maximum limit of
XXXX.

Action: Please check the sizes of locals that needs to be sent and make sure their lengths are less than
XXXX. For those big locals, consider using another mechanism such as sockets.

MUPJNLINTERRUPT

MUPJNLINTERRUPT, Database file xxxx indicates interrupted MUPIP JOURNAL command. Restore
from backup for forward recover/rollback.

MUPIP Error: This indicates that a MUPIP JOURNAL -ROLLBACK -FORWARD or a MUPIP JOURNAL
-RECOVER -FORWARD did not proceed because a previous MUPIP JOURNAL command attempted on
the database was terminated abnormally.

Action: Restore the database and journal files from a backup to proceed with the MUPIP JOURNAL -
ROLLBACK -FORWARD or MUPIP JOURNAL -RECOVER -FORWARD.

NOPRINCIO

NOPRINCIO, NOPRINCIO Unable to write to principal device

Run Time Fatal: This indicates that GT.M attempted to, but could not, READ from, or WRITE to, the
principal device and therefore attempted to issue an appropriate error, for example, an IOEOF. However
if the error handling does not prevent any and all subsequent READs and WRITEs to the no longer
available principal device, the next subsequent I/O error shuts down the process immediately with a
NOPRINCIO to prevent mysteriously lost output, or, worse, an indefinite loop.

Action: The NOPRINCIO error message is FATAL which does not drive device or trap handlers and
terminates the process. This termination does not allow any application level orderly shutdown and,
depending on the application may lead to out-of-design application state. Therefore FIS recommends

NOTALLJNLEN Error and Other Messages

GTM V6.3-001
FIS

March 11, 2020, Page 55

appropriate application level error handling that recognizes the preceding error and performs
an orderly shutdown without issuing any additional READ or WRITE to the principal device.
The most common causes for the principal device to cease to exist involve terminal sessions or
socket connections (including those from processes started by inetd/xinetd). When the remote
client terminates the connection, the underlying principal device becomes inaccessible making any
subsequent attempt to READ from, or WRITE to, it hopeless. In the case of terminals, a user closing the
window of a session without cleanly exiting from the GT.M process sets up the case that can drive this
error.

NOTALLJNLEN

NOTALLJNLEN, Journaling disabled/off for dddd regions

MUPIP Warning: This indicates that some or all regions do not have journal state ON.

Action: Ensure you have journaling enabled for all regions that require it; use MUPIP SET to enable
journaling.

NOTALLREPLON

NOTALLREPLON, Replication off for dddd regions

MUPIP Warning: This indicates that some or all regions have replication state OFF.

Action: Ensure you have replication on for all regions that require it; use MUPIP SET to enable
replication.

OFRZACTIVE

OFRZACTIVE, Region aaaa has an Online Freeze

MUPIP Warning: A MUPIP operation has been requested while an Online Freeze is in place, but the
operation can not be performed with an Online Freeze.

Action: The operation was not performed. Remove the freeze with MUPIP FREEZE -OFF and retry the
operation.

OFRZAUTOREL

OFRZAUTOREL, Online Freeze automatically released for region aaaa

Operator log Warning: A process needed to modify the database file for region aaaa, which had an
Online Freeze, but with AutoRelease selected. The process continued normally, modifying the file.

Action: Discard any database copy or snapshot made after the Online Freeze, as its contents are suspect.
Perform a MUPIP FREEZE -OFF to clean up the prior Online Freeze. If the AutoRelease behavior is

Error and Other Messages OFRZCRITREL

FIS
Page 56, March 11, 2020 FIS

not desired, try again with MUPIP FREEZE -ON -ONLINE -NOAUTORELEASE. If the cause of the
AutoRelease is unclear, report this and the accompanying ERRCALL message to your GT.M support
channel.

OFRZCRITREL

OFRZCRITREL, Proceeding with a write to region aaaa after Online Freeze while holding crit

Operator log Warning: A process previously encountered a OFRZCRITSTUCK condition, which has
since been resolved.

Action: None.

OFRZCRITSTUCK

OFRZCRITSTUCK, Unable to proceed with a write to region !AD with Online Freeze while holding
crit. Region stuck until freeze is removed.

Operator log Warning: A process needed to do a database write while holding a critical resource, but an
Online Freeze was in place without AutoRelease enabled. No other process will be able to acquire the
critical resource until the Online Freeze is removed.

Action: MUPIP FREEZE -OFF will remove the freeze and allow the process to continue, at which
time it will send a OFRZCRITREL message to the operator log. This situation can be avoided by
specifying MUPIP FREEZE -ON -ONLINE without the -NOAUTORELEASE option, or by including the -
AUTORELEASE option.

OFRZNOTHELD

OFRZNOTHELD, Online Freeze had been automatically released for at least one region

MUPIP Warning: A MUPIP FREEZE -OFF command encountered at least one region which previously
had an Online Freeze, but a process had AutoReleased it.

Action: The command cleaned up the region with the AutoReleased Online Freeze, and database
operations are back to normal. However, any database file snapshots or copies made after the Online
Freeze should be discarded, as processes likely will have written to the file since the AutoRelease. An
OFRZAUTOREL message in the operator log will report which process performed the AutoRelease.

RECLOAD

RECLOAD, Error loading record number: nnnn

MUPIP Error: This message identifies a record nnnn that MUPIP could not LOAD and follows a
message about the cause. If this message is Fatal, which it can be for BIN format, it produces a core file
for diagnostic analysis.

REPLLOGOPN Error and Other Messages

GTM V6.3-001
FIS

March 11, 2020, Page 57

Action: Address the cause or, for GO and ZWR format input files, examine the record with a text editor
for possible correction or alternate action and for BIN format if fixing the cause does not resolve the
error switch to ZWR format EXTRACT.

REPLLOGOPN

REPLLOGOPN, Replication subsystem could not open log file LLLL : eeee. Logging done to OOOO

MUPIP Error: This indicates that MUPIP could not find, or did not have access permission to open,
the log file LLLL, because of the error eeee. If there is another log file available (a previously opened
file), MUPIP writes to the other log file OOOO. If there is no other log file available, MUPIP sends any
remaining messages to /dev/null and terminates the replication server process.

Action: Check the log file permissions, and if permissions are correct, move the log file and specify that
MUPIP should log to a log file which has appropriate access permissions.

REPLSTATEOFF

REPLSTATEOFF, MUPIP JOURNAL -ROLLBACK -BACKWARD cannot proceed as database xxxx
does not have replication ON

MUPIP Error: This indicates that a MUPIP JOURNAL -ROLLBACK -BACKWARD command cannot
proceed because the specified database xxxx does not have replication state ON. In most situations, this
error occurs when the journal file storage runs out of disk space.

Action: Ensure replication is turned ON for a database, before executing the MUPIP JOURNAL -
ROLLBACK -BACKWARD command. If the database is in the WAS_ON state, refer to the "Recovering
from the WAS_ON state" section in the Database Replication chapter of the Administration and
Operations Guide. Alternatively, if replication was not in use on the database, use MUPIP JOURNAL -
RECOVER.

REQROLLBACK

REQROLLBACK, Error accessing database dddd. Run MUPIP JOURNAL -ROLLBACK -NOONLINE on
cluster node cccc.

Run Time Error: This indicates that GT.M could not open a previously replicated database file dddd due
to a prior improper shutdown on cluster node cccc. A GT.M process on cluster node ccccc may have
failed to attach a database memory segment or it was terminated by a method other than MUPIP STOP.

Action: Perform MUPIP JOURNAL -ROLLBACK -NOONLINE to cleanup the instance file, database, and
journal files before starting a source server on this instance.

RESRCINTRLCKBYPAS

RESRCINTRLCKBYPAS, tttt with PID qqqq bypassing the ssss semaphore for region rrrr (ffff)
currently held by PID pppp.

Error and Other Messages RESRCWAIT

FIS
Page 58, March 11, 2020 FIS

All GT.M Components Information: GT.M issues the RESRCINTRLCKBYPAS message to the system
log as an indication it may not detect when the last process detaches from the shared resource and
therefore may not rundown the database shared resources as it normally would. GT.M protects
the actions of setting up and tearing down the shared resources associated with a database with a
pair of semaphores. Because DSE, and LKE are tools for diagnosing issues, when they start and find
they cannot acquire the semaphores after a reasonable number of tries, they proceed to open the
database anyway because it is highly probable the database is already set up. When DSE and LKE
bypass the semaphore acquisition, they leave the count of attached processes incorrect. When many
processes terminate at the same time, typically because of a system shutdown, there can be significant
contention for the semaphores that can cause their terminations to take an unusually long time. When
this happens, and the count of remaining attached processes is significant, a process may skip the
semaphore acquisition, again leaving the count of attached process incorrect. If either of these events
occurs, GT.M issues the RESRCINTRLCKBYPAS message where tttt identifies the process type: "LKE",
"DSE" or "GT.M"; qqqq is the bypassing process's PID; ssss identifies the semaphore type: "FTOK" or
"access control"; rrrr is the region bypassed; ffff is the file corresponding to region rrrr; pppp is the PID
of the process holding the semaphore.

Action: These messages when shutting down GT.M activity may indicate a need to complete the
process by invoking a MUPIP JOURNAL -ROLLBACK -BACKWARD for replicated databases, a MUPIP
JOURNAL -RECOVER -BACKWARD for unreplicated journaled databases and a MUPIP RUNDOWN
for journal-free databases to get the database to a safe state; doing so as part of every shutdown is good
practice.

RESRCWAIT

RESRCWAIT, Waiting briefly for the tttt semaphore for region rrrr (ffff) was held by PID pppp (Sem.
ID: ssss)

Run Time Information: A process started a three (3) second wait for an FTOK or access control
semaphore. If process with PID pppp does not release the semaphore before the timeout expires, the
waiting process bypasses acquiring the semaphore. tttt identifies the semaphore type: "FTOK" or "access
control"; rrrr is the region; ffff is the database file corresponding to region rrrr; ssss is the semaphore
ID.

Action: None required.

TPRESTART

TPRESTART, Database mmmm; code: xxxx; blk: yyyy in glbl: zzzz; pvtmods: aaaa, blkmods: bbbb,
blklvl: cccc, type: dddd, readset: eeee, writeset: ffff, local_tn: gggg, zpos: hhhh

Run Time Information: The UNIX environment variables GTM_TPRESTART_LOG_FIRST
and GTM_TPRESTART_LOG_DELTA control the logging of TPRESTART messages.
GTM_TPRESTART_LOG_FIRST indicates the number of TP restarts to log from a GT.M invocation.
Once that many have been logged, every GTM_TPRESTART_LOG_DELTA TP restarts, GT.M logs
a restart message. If GTM_TPRESTART_LOG_DELTA is undefined, GT.M performs no operator
logging. The default value for GTM_TPRESTART_LOG_FIRST is 0 (zero), which leaves the control

TRIGINVCHSET Error and Other Messages

GTM V6.3-001
FIS

March 11, 2020, Page 59

completely with GTM_TPRESTART_LOG_DELTA. The facility that produces this message can serve as
a diagnostic tool in developmental environments for investigating contention due to global updates. A
zzzz of "*BITMAP" indicates contention in block allocation which might involve multiple globals. hhhh
is the $ZPOSITION of the line of M code that caused the restart of the transaction; utilities leave this
field blank.

Action: Disable, or adjust the frequency of, these messages with the mechanism described above. To
reduce the number of restarts, consider changes to the global structure, or varying the time when work
is scheduled. Consider whether the business and program logic permits the use of NOISOLATION.

TRIGINVCHSET

TRIGINVCHSET, Trigger tttt for global gggg was created with CHSET=cccc which is different from
the current $ZCHSET of this process

Trigger/Run Time Error: TRIGINVCHSET occurs when a process invokes a trigger on a global using a
$ZCHSET that is different from the $ZCHSET used at the time of loading the first trigger on that global.
GT.M implicitly uses the $ZCHSET of the first trigger on a global to invoke all triggers on that global.
Note that tttt is the name of the first trigger on the global gggg-not necessarily the name of the trigger
being invoked. cccc is the $ZCHSET of the process at the time of loading tttt on global gggg.

Action: Ensure that the process invoking a trigger on a global uses the same $ZCHSET that was used
to load the first trigger on that global. If your application requires triggers in both M and UTF-8 modes,
use different globals to load M mode and UTF-8 mode triggers.

ZATRANSERR

ZATRANSERR, The input string is too long to convert

Run Time Error: The first (expression) argument to a $ZATRANSFORM() produces a result that exceeds
the maximum key length.

Action: Analyze the logic to determine if the argument is correct. If you need to produce translations
that exceed the maximum key length, you must use $ZCOLLATE() or break them into chunks to avoid
this error, Note that some transforms may use context such that selecting the chunks requires an
understanding of the transform.

GTM V6.3-001
Page 60, March 11, 2020 FIS

	
	Table of Contents
	V6.3-001A
	Overview
	Conventions
	Platforms
	Platform support lifecycle

	32- vs. 64-bit platforms
	Call-ins and External Calls
	Internationalization (Collation)
	Environment Translation

	Recompile
	Rebuild Shared Libraries or Images
	Additional Installation Instructions
	
	Compiling the Reference Implementation Plugin

	Upgrading to GT.M V6.3-001A
	Stage 1: Global Directory Upgrade
	Stage 2: Database Files Upgrade
	Database Compatibility Notes

	Stage 3: Replication Instance File Upgrade
	Stage 4: Journal Files Upgrade
	Stage 5: Trigger Definitions Upgrade
	Downgrading to V5 or V4

	Managing M mode and UTF-8 mode
	Setting the environment variable TERM
	Installing Compression Libraries

	Change History
	V6.3-001A
	V6.3-001

	Database
	Language
	System Administration
	Other
	More Information
	Additional information for GTM-6838 - Asynchronous database IO
	Additional information for GTM-6699 - Monitoring of shared database statistics

	Error and Other Messages
	CHANGELOGINTERVAL
	CRYPTNOMM
	DBDUPNULCOL
	DBMISALIGN
	DBNULCOL
	DBTOTBLK
	GDECRYPTNOMM
	GDINVALID
	INVADDRSPEC
	INVLINKTMPDIR
	INVMEMRESRV
	IOEOF
	JOBLVN2LONG
	JOBLVNDETAIL
	MUPJNLINTERRUPT
	NOPRINCIO
	NOTALLJNLEN
	NOTALLREPLON
	OFRZACTIVE
	OFRZAUTOREL
	OFRZCRITREL
	OFRZCRITSTUCK
	OFRZNOTHELD
	RECLOAD
	REPLLOGOPN
	REPLSTATEOFF
	REQROLLBACK
	RESRCINTRLCKBYPAS
	RESRCWAIT
	TPRESTART
	TRIGINVCHSET
	ZATRANSERR

