
GT.M
Release Notes
V6.2-002

FIS
Page 2, February 06, 2019 FIS

Contact Information

GT.M Group
Fidelity National Information Services, Inc.
200 Campus Drive
Collegeville, PA 19426
United States of America

GT.M Support for customers: gtmsupport@fisglobal.com
Automated attendant for 24 hour support: +1 (484) 302-3248
Switchboard: +1 (484) 302-3160
Website: http://fis-gtm.com

Legal Notice

Copyright ©2015, 2019 Fidelity National Information Services, Inc. and/or its subsidiaries. All Rights Reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts and no Back-Cover Texts.

GT.M™ is a trademark of Fidelity National Information Services, Inc. Other trademarks are the property of their respective
owners.

This document contains a description of GT.M and the operating instructions pertaining to the various functions that
comprise the system. This document does not contain any commitment of FIS. FIS believes the information in this publication
is accurate as of its publication date; such information is subject to change without notice. FIS is not responsible for any errors
or defects.

Revision History

Revision 1.5 5 February 2019 Updated the Platforms section to add
AIX 7.1 TL 4 and AIX 7.2 as supported
versions; Correct the maximum V6
database size.

Revision 1.4 13 October 2015 * In Platforms and under the entry
for x86_64 GNU/Linux, added
information and workaround about a
bug in Linux 3.13 kernels that affects
GT.M operations.

* Improved the description of
GTM-5894.

Revision 1.3 28 August 2015 In Recompiling the Reference
Implementation Plugin, removed
all references to creating symlinks
and corrected the instructions
for recompiling the reference
implementation plugin.

Revision 1.2 29 June 2015 Updated for V6.2-002A. Added the
release note for GTM-8376.

Revision 1.1 08 June 2015 Added release notes for GTM-8369,
GTM-8370, and GTM-8371.

Revision 1.0 26 May 2015 V6.2-002 - First published revision.

http://fis-gtm.com
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt

GT.M V6.2-002
FIS

February 06, 2019, Page iii

Table of Contents
V6.2-002A ... 1

Overview .. 1
Conventions ... 1
Platforms .. 3

Platform support lifecycle ... 5
Migrating to 64-bit platforms .. 6

Call-ins and External Calls .. 6
Internationalization (Collation) .. 6
Environment Translation ... 7

Recompile ... 7
Rebuild Shared Libraries or Images .. 7
Additional Installation Instructions .. 7

.. 7
Upgrading to GT.M V6.2-002A .. 9

Stage 1: Global Directory Upgrade ... 10
Stage 2: Database Files Upgrade ... 10
Stage 3: Replication Instance File Upgrade .. 12
Stage 4: Journal Files Upgrade ... 13
Stage 5: Trigger Definitions Upgrade ... 13
Downgrading to V5 or V4 ... 14

Managing M mode and UTF-8 mode .. 15
Compiling ICU .. 17

Setting the environment variable TERM ... 17
Installing Compression Libraries .. 17

Change History ... 19
V6.2-002A ... 19
V6.2-002 .. 19

M-Database Access .. 25
M-Other Than Database Access ... 29
Utilities-MUPIP ... 37
Utilities-Other Than MUPIP ... 39
Error and Other Messages ... 41

ARCTLMAXHIGH ... 41
ARCTLMAXLOW .. 41
INVLINKTMPDIR .. 41
INVTMPDIR .. 41
INVZBREAK ... 42
JOBLVNDETAIL .. 42
LASTWRITERBYPAS ... 42
NODFRALLOCSUPP .. 42
NOPRINCIO .. 43
PREALLOCATEFAIL ... 43
RECLOAD ... 43

FIS
Page iv, February 06, 2019 FIS

REPLLOGOPN ... 43
REPLSRCEXITERR ... 44
RESRCINTRLCKBYPAS ... 44
TPRESTART .. 44
TRIGINVCHSET .. 45
TRIGUPBADLABEL ... 45
WEIRDSYSTIME .. 45

GT.M V6.2-002
FIS

February 06, 2019, Page 1

V6.2-002A

Overview

V6.2-002 brings a number of modest enhancements to GT.M. Improving performance:

* By reducing the number of dirty global buffers to be flushed in anticipation of an impending epoch,
epoch tapers aim to ameliorate spikes in response time that can occur at epochs. (GTM-6638)

* $ORDER(gvn,-1) - "reverse dollar order" - of global variables is faster. (GTM-7917)

* Under conditions of high contention, processes holding locks exit faster (GTM-8228), processes
acquire database critical sections more efficiently when the mutex queue slots are all used
(GTM-8286), and lock acquisition is more efficient with substantially reduced impact on database
throughput (GTM-8241).

* Code size reduction that also improves performance (GTM-8224).

Enhancements include:

* Intrinsic special variables: $ZUT provides a universal (across systems and across time zones) time
stamp, and $ZHOROLOG extends $HOROLOG with additional pieces that provide microsecond
resolution and time zone information. (GTM-7949)

* TLS for SOCKET devices benefits from enhancements to WRITE /TLS and $ZSOCKET(). (GTM-8219)

* The environment variable gtm_autorelink_ctlmax provides a control to set the number of unique
routine names in relink conrol files. (GTM-8240)

VIEW "POOLLIMIT" functionality introduced as field test grade functionality in the production release
V6.2-001 is considered production grade functionality in V6.2-002

As always, the release bring numerous smaller enhancements, including to the $ZQGBLMOD() function
(GTM-8298), better handling of split $PRINCIPAL (GTM-5688), more helpful TPRESTART messages
(GTM-8350), and more. Robustness is improved, especially in the triggers, and security has been
tightened by dropping support for dubious edge cases (GTM-8278). These changes are described below.

Conventions

This document uses the following conventions:

Flag/Qualifiers -

Program Names or Functions upper case. For example, MUPIP BACKUP

Examples lower case. For example:
mupip backup -database ACN,HIST /backup

Reference Number A reference number is used to track software

#GTM-6638
#GTM-7917
#GTM-8228
#GTM-8286
#GTM-8241
#GTM-8224
#GTM-7949
#GTM-8219
#GTM-8240
#GTM-8298
#GTM-5688
#GTM-8350
#GTM-8278

V6.2-002A Conventions

FIS
Page 2, February 06, 2019 FIS

enhancements and support requests.
It is enclosed between parentheses ().

Platform Identifier Where an item affects only specific platforms, the
platforms are listed in square brackets, e.g., [AIX]

Note

The term UNIX refers to the general sense of all platforms on which GT.M uses a
POSIX API. As of this date, this includes: AIX, HP-UX on IA64, GNU/Linux on x86
(32- and 64-bits_, and Solaris on SPARC.

The following table summarizes the new and revised replication terminology and qualifiers.

Pre V5.5-000 terminology Pre V5.5-000
qualifier

Current terminology Current qualifiers

originating instance or primary
instance

-rootprimary originating instance or
originating primary instance.

Within the context of a
replication connection between
two instances, an originating
instance is referred to as
source instance or source side.
For example, in an B<-A->C
replication configuration, A is
the source instance for B and C.

-updok
(recommended)

-rootprimary (still
accepted)

replicating instance (or
secondary instance) and
propagating instance

N/A for replicating
instance or
secondary instance.

-propagateprimary
for propagating
instance

replicating instance.

Within the context of a
replication connection between
two instances, a replicating
instance that receives updates
from a source instance is
referred to as receiving instance
or receiver side. For example,
in an B<-A->C replication
configuration, both B and C can
be referred to as a receiving
instance.

-updnotok

N/A N/A supplementary instance.

For example, in an A->P->Q
replication configuration, P is
the supplementary instance.
Both A and P are originating
instances.

-updok

Platforms V6.2-002A

GTM V6.2-002
FIS

February 06, 2019, Page 3

Effective V6.0-000, GT.M documentation adopted IEC standard Prefixes for binary multiples. This
document therefore uses prefixes Ki, Mi and Ti (e.g., 1MiB for 1,048,576 bytes). All GT.M documentation
will over time be updated to this standard.

 denotes a new feature that requires updating the manuals.

 denotes a new feature or an enhancement that may not be upward compatible and may affect an
existing application.

 denotes deprecated messages.

 denotes revised messages.

 denotes added messages.

Platforms

Over time, computing platforms evolve. Vendors obsolete hardware architectures. New versions
of operating systems replace old ones. We at FIS continually evaluate platforms and versions of
platforms that should be Supported for GT.M. In the table below, we document not only the ones that
are currently Supported for this release, but also alert you to our future plans given the evolution of
computing platforms. If you are an FIS customer, and these plans would cause you hardship, please
contact your FIS account executive promptly to discuss your needs.

GT.M runs on a variety of UNIX/Linux implementations. Consult FIS for currently supported versions.
Each GT.M release is extensively tested by FIS on a set of specific versions of operating systems on
specific hardware architectures (the combination of operating system and hardware architecture is
referred to as a platform). This set of specific versions is considered Supported. There will be other
versions of the same operating systems on which a GT.M release may not have been tested, but on
which the FIS GT.M support team knows of no reason why GT.M would not work. This larger set of
versions is considered Supportable. There is an even larger set of platforms on which GT.M may well
run satisfactorily, but where the FIS GT.M team lacks the knowledge to determine whether GT.M is
Supportable. These are considered Unsupported. Contact FIS GT.M Support with inquiries about your
preferred platform.

As of the publication date, FIS supports this release on the hardware and operating system versions
below. Contact FIS for a current list of Supported platforms. The reference implementation of the
encryption plugin has its own additional requirements, should you opt to use it as included with GT.M.

Platform Supported
Versions

Notes

Hewlett-Packard Integrity
IA64

HP-UX

11V3 (11.31) FIS intends to no longer support this platform after October 1,
2015. Contact your FIS support channel if you wish to use GT.M
on this platform.

http://physics.nist.gov/cuu/Units/binary.html

V6.2-002A Platforms

FIS
Page 4, February 06, 2019 FIS

Platform Supported
Versions

Notes

Hewlett-Packard Alpha/AXP
OpenVMS

- V6.2-001 was the last GT.M release for this platform, which is no
longer supported. Please contact your FIS account manager if you
need ongoing support for GT.M on this platform.

IBM System p AIX 6.1, 7.1 TL 4,
7.2

Only 64-bit versions of AIX are Supported.

While GT.M supports both UTF-8 mode and M mode on
this platform, there are problems with the AIX ICU utilities
that prevent FIS from testing 4-byte UTF-8 characters as
comprehensively on this platform as we do on others.

AIX 7.1 TL 5 is Supportable.

Running GT.M on AIX 7.1 requires APAR IZ87564, a fix for the
POW() function, to be applied. To verify that this fix has been
installed, execute instfix -ik IZ87564.

Oracle (Sun) SPARC Solaris 10 (Update 6
and above)

FIS intends to no longer support this platform after December 5,
2015. Contact your FIS support channel if you wish to use GT.M
on this platform.

x86_64 GNU/Linux Red Hat
Enterprise
Linux 6 and
7; Ubuntu
12.04 LTS
and Ubuntu
14.04 LTS;
SuSE Linux
Enterprise
Server 11

To run 64-bit GT.M processes requires both a 64-bit kernel as
well as 64-bit hardware.

GT.M should also run on recent releases of other major Linux
distributions with a contemporary Linux kernel (2.6.32 or
later), glibc (version 2.12 or later) and ncurses (version 5.7 or
later).

To install GT.M with Unicode (UTF-8) support on RHEL 6, in
response to the installation question Should an ICU version
other than the default be used? (y or n) please respond
y and then specify the ICU version (for example, respond 4.2)
to the subsequent prompt Enter ICU version (ICU version
3.6 or later required. Enter as major-ver.minor-ver): As
a consequence of the change in numbering implemented by
ICU, for ICU versions 49 and greater, enter the version number
divided by 10, e.g., 5.2 for ICU version number 52.

GT.M requires the libtinfo library. If it is not already installed
on your system, and is available using the package manager,
install it using the package manager. If a libtinfo package is not
available (for example on SuSE 11):

* Find the directory where libncurses.so is installed on your
system.

* Change to that directory and make a symbolic link to
libncurses.so.<ver> from libtinfo.so.<ver>. Note that some of
the libncurses.so entries may themselves be symbolic links,

Platforms V6.2-002A

GTM V6.2-002
FIS

February 06, 2019, Page 5

Platform Supported
Versions

Notes

for example, libncurses.so.5 may itself be a symbolic link to
libncurses.so.5.9.

To support the optional WRITE /TLS fifth argument (the
ability to provide / override options in the tlsid section of the
encryption configuration file), the reference implementation
of the encryption plugin requires libconfig 1.4.x. As this is
a higher level than that distributed with Red Hat Enterprise
Linux 6 or Ubuntu 12.04 LTS, in order to use this feature
of WRITE/TLS on those platforms with the reference
implementation, please install libconfig 1.4.x, including the
header files, and recompile the reference implementation of
the reference implementation of the encryption plugin.

A bug in the Linux 3.13 kernels used in Ubuntu 14.04
LTS (https://bugs.launchpad.net/ubuntu/+source/linux/
+bug/1502168) affects GT.M operation. As newer kernels
do not exhibit this misbehavior, FIS recommends that you
follow the Ubuntu LTS Enablement Stack procedure (https://
wiki.ubuntu.com/Kernel/LTSEnablementStack) and use newer
kernels to avoid the behavior until such time as the bug is
fixed in the 3.13 kernels.

x86 GNU/Linux Red Hat
Enterprise
Linux 6 and 7

This 32-bit version of GT.M runs on either 32- or 64-bit x86
platforms; we expect the X86_64 GNU/Linux version of GT.M
to be preferable on 64-bit hardware. The CPU must have an
instruction set equivalent to 586 (Pentium) or better. Also,
refer to the notes above on the 64-bit version.

To support the optional WRITE /TLS fifth argument (the
ability to provide / override options in the tlsid section of the
encryption configuration file), the reference implementation
of the encryption plugin requires libconfig 1.4.x. As this is
a higher level than that distributed with Red Hat Enterprise
Linux 6 or Ubuntu 12.04 LTS, in order to use this feature
of WRITE/TLS on those platforms with the reference
implementation, please install libconfig 1.4.x, including the
header files, and recompile the reference implementation of
the reference implementation of the encryption plugin.

Platform support lifecycle

FIS usually supports new operating system versions six months or so after stable releases are available
and we usually support each version for a two year window. GT.M releases are also normally supported
for two years after release. While FIS will attempt to provide support to customers in good standing for
any GT.M release and operating system version, our ability to provide support diminishes after the two
year window.

https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1502168
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1502168
https://wiki.ubuntu.com/Kernel/LTSEnablementStack
https://wiki.ubuntu.com/Kernel/LTSEnablementStack

V6.2-002A Migrating to 64-bit platforms

FIS
Page 6, February 06, 2019 FIS

GT.M cannot be patched, and bugs are only fixed in new releases of software.

Migrating to 64-bit platforms

The same application code runs on both 32-bit and 64-bit platforms. Please note that:

* You must compile the application code separately for each platform. Even though the M source
code is exactly the same, the generated object modules are different even on the same hardware
architecture - the object code differs between x86 and x86_64.

* Parameter-types that interface GT.M with non-M code using C calling conventions must match
the data-types on their target platforms. Mostly, these parameters are for call-ins, external calls,
internationalization (collation) and environment translation, and are listed in the tables below. Note
that most addresses on 64-bit platforms are 8 bytes long and require 8 byte alignment in structures
whereas all addresses on 32-bit platforms are 4 bytes long and require 4-byte alignment in structures.

Call-ins and External Calls

Parameter type 32-Bit 64-bit Remarks

gtm_long_t 4-byte
(32-bit)

8-byte
(64-bit)

gtm_long_t is much the same as the C language long type.

gtm_ulong_t 4-byte 8-byte gtm_ulong_t is much the same as the C language unsigned
long type.

gtm_int_t 4-byte 4-byte gtm_int_t has 32-bit length on all platforms.

gtm_uint_t 4-byte 4-byte gtm_uint_t has 32-bit length on all platforms

Caution

If your interface uses gtm_long_t or gtm_ulong_t types but your interface code uses
int or signed int types, failure to revise the types so they match on a 64-bit platform
will cause the code to fail in unpleasant, potentially dangerous and hard to diagnose
ways.

Internationalization (Collation)

Parameter type 32-Bit 64-bit Remarks

gtm_descriptor in
gtm_descript.h

4-byte 8-byte Although it is only the address within these types that
changes, the structures may grow by up to 8 bytes as a
result of compiler padding to meet platform alignment
requirements.

Recompile V6.2-002A

GTM V6.2-002
FIS

February 06, 2019, Page 7

Important

Assuming other aspects of code are 64-bit capable, collation routines should require
only recompilation.

Environment Translation

Parameter type 32-Bit 64-bit Remarks

gtm_string_t type in
gtmxc_types.h

4-byte 8-byte Although it is only the address within these types that
changes, the structures may grow by up to 8 bytes as a
result of compiler padding to meet platform alignment
requirements.

Important

Assuming other aspects of code are 64-bit capable, environment translation routines
should require only recompilation.

Recompile

* Recompile all M and C source files.

Rebuild Shared Libraries or Images

* Rebuild all Shared Libraries after recompiling all M and C source files.

Additional Installation Instructions

To install GT.M, see the "Installing GT.M" section in the GT.M Administration and Operations
Guide. For minimal down time, upgrade a current replicating instance and restart replication. Once
that replicating instance is current, switch it to become the originating instance. Upgrade the prior
originating instance to become a replicating instance, and perform a switchover when you want it
again to resume an originating primary role.

Caution

Never replace the binary image on disk of any executable file while it is in use by
an active process. It may lead to unpredictable results. Depending on the operating
system, these results include but are not limited to denial of service (that is, system
lockup) and damage to files that these processes have open (that is, database
structural damage).

V6.2-002A Additional Installation Instructions

FIS
Page 8, February 06, 2019 FIS

* FIS strongly recommends installing each version of GT.M in a separate (new) directory, rather than
overwriting a previously installed version. If you have a legitimate need to overwrite an existing
GT.M installation with a new version, you must first shut down all processes using the old version.
FIS suggests installing GT.M V6.2-002A in a Filesystem Hierarchy Standard compliant location such
as /usr/lib/fis-gtm/V6.2-002A_arch (for example, /usr/lib/fis-gtm/V6.2-002A_x86 on 32-bit Linux
systems). A location such as /opt/fis-gtm/V6.2-002A_arch would also be appropriate. Note that the
arch suffix is especially important if you plan to install 32- and 64-bit versions of the same release of
GT.M on the same system.

* Use the MUPIP RUNDOWN command of the old GT.M version to ensure all database files are cleanly
closed.

* Make sure gtmsecshr is not running. If gtmsecshr is running, first stop all GT.M processes including
the DSE, LKE and MUPIP utilities and then perform a MUPIP STOP pid_of_gtmsecshr.

* Starting with V6.2-000, GT.M no longer supports the use of the deprecated $gtm_dbkeys and
the master key file it points to for database encryption. To convert master files to the libconfig

format, please click to download the CONVDBKEYS.m program and follow instructions in
the comments near the top of the program file. You can also download CONVDBKEYS.m from
http://tinco.pair.com/bhaskar/gtm/doc/articles/downloadables/CONVDBKEYS.m. If you are
using $gtm_dbkeys for database encryption, please convert master key files to libconfig format
immediately after upgrading to V6.2-000. Also, modify your environment scripts to include the use of
gtmcrypt_config environment variable.

Recompiling the Reference Implementation Plugin

If you plan to use database encryption and TLS replication, FIS recommends that you recompile the
reference implementation plugin. Recompiling the reference implementation plugin is recommended
because the shared library dependencies in the pre-compiled reference implementation in GT.M
distributions may not always match the shared libraries available on your platform. Recompile the
reference implementation plugin as follows:

1. Install the header files for libgcrypt, libgpgme, libconfig, and libssl. On Linux, the header files are
usually available in package libraries that have a -dev or -devel suffix and are available through
the package manager. For example, on Ubuntu_x86_64 a command like the following installs the
required development libraries:

sudo apt-get install libgcrypt11-dev libgpgme11-dev libconfig-dev libssl-dev

The package names vary by distribution / version.

2. Note down the file permissions of the *.so files in $gtm_dist/plugin directory.

3. Unpack $gtm_dist/plugin/gtmcrypt/source.tar to a temporary directory.

mkdir /tmp/plugin-build
cd /tmp/plugin-build
cp $gtm_dist/plugin/gtmcrypt/source.tar .
tar -xvf source.tar

http://tinco.pair.com/bhaskar/gtm/doc/articles/downloadables/CONVDBKEYS.m

Upgrading to GT.M V6.2-002A V6.2-002A

GTM V6.2-002
FIS

February 06, 2019, Page 9

4. Open Makefile. Review and edit the following common header and library paths in the Makefile to
reflect those on your systems when you rebuild the plugin.

Common header and library paths
IFLAGS += -I /usr/local/ssl/include -I /usr/local/include -I /usr/include -I $(gtm_dist) -
I $(CURDIR)
ifeq ($(BIT64),0)
 LIBFLAGS += -L /usr/local/ssl/lib -L /usr/lib/x86_64-linux-gnu -L /usr/local/lib64
 LIBFLAGS += -L /usr/local/lib -L /usr/lib64 -L /usr/lib -L /lib64 -L /lib -L `pwd`
else
 LIBFLAGS += -L /usr/local/ssl/lib -L /usr/lib/x86-linux-gnu -L /usr/local/lib32
 LIBFLAGS += -L /usr/local/lib -L /usr/lib32 -L /usr/lib -L /lib32 -L /lib -L `pwd`
endif

5. With the absolute path to the directory where GT.M is installed set in the gtm_dist environment
variable, (a) recompile the reference plugin, and (b) as root, replace the plugin in the $gtm_dist/
plugin directory, for example:

make
sudo make uninstall && sudo make install
make clean

6. Assign permissions noted in step 3 to the newly installed .so files in $gtm_dist/plugin.

7. Your reference implementation plugin is recompiled successfully.

Additional Information for JFS1 on AIX

If you expect a database file or journal file to exceed 2GB with older versions of the JFS file system, then
you must configure its file system to permit files larger than 2GB. Furthermore, should you choose to
place journal files on file systems with a 2GB limit, since GT.M journal files can grow to a maximum
size of 4GB, you must then set the journal auto switch limit to less than 2 GB.

Upgrading to GT.M V6.2-002A

The GT.M database consists of four types of components- database files, journal files, global directories,
and replication instance files. The format of some database components is different for 32-bit and 64-bit
GT.M releases for the x86 GNU/Linux platform.

GT.M upgrade procedure for V6.2-002A consists of 5 stages:

* Stage 1: Global Directory Upgrade

* Stage 2: Database Files Upgrade

* Stage 3: Replication Instance File Upgrade

* Stage 4: Journal Files Upgrade

* Stage 5: Trigger Definitions Upgrade

V6.2-002A Upgrading to GT.M V6.2-002A

FIS
Page 10, February 06, 2019 FIS

Read the upgrade instructions of each stage carefully. Your upgrade procedure for GT.M V6.2-002A
depends on your GT.M upgrade history and your current version.

Stage 1: Global Directory Upgrade

FIS strongly recommends you back up your Global Directory before upgrading. There is no single-step
method for downgrading a Global Directory to an older format.

To upgrade from any previous version of GT.M:

* Open your Global Directory with the GDE utility program of GT.M V6.2-002A.

* Execute the EXIT command. This command automatically upgrades the Global Directory.

To switch between 32- and 64-bit global directories on the x86 GNU/Linux platform:

1. Open your Global Directory with the GDE utility program on the 32-bit platform.

2. On GT.M versions that support SHOW -COMMAND, execute SHOW -COMMAND -FILE=file-name.
This command stores the current Global Directory settings in file-name.

3. On GT.M versions that do not support GDE SHOW -COMMAND, execute the SHOW -ALL
command. Use the information from the output to create an appropriate command file or use it as a
guide to manually enter commands in GDE.

4. Open GDE on the 64-bit platform. If you have a command file from 2. or 3., execute @file-name
and then run the EXIT command. These commands automatically create the Global Directory.
Otherwise use the GDE output from the old Global Directory and apply the settings in the new
environment.

An analogous procedure applies in the reverse direction.

If you inadvertently open a Global Directory of an old format with no intention of upgrading it, execute
the QUIT command rather than the EXIT command.

If you inadvertently upgrade a global directory, perform the following steps to downgrade to an old
GT.M release:

* Open the global directory with the GDE utility program of V6.2-002A.

* Execute the SHOW -COMMAND -FILE=file-name command. This command stores the current
Global Directory settings in the file-name command file. If the old version is significantly out of date,
edit the command file to remove the commands that do not apply to the old format. Alternatively,
you can use the output from SHOW -ALL or SHOW -COMMAND as a guide to manually enter
equivalent GDE commands for the old version.

Stage 2: Database Files Upgrade

To upgrade from GT.M V5.0*/V5.1*/V5.2*/V5.3*/V5.4*/V5.5:

Upgrading to GT.M V6.2-002A V6.2-002A

GTM V6.2-002
FIS

February 06, 2019, Page 11

A V6 database file is a superset of a V5 database file and has potentially longer keys and records.
Therefore, upgrading a database file requires no explicit procedure. After upgrading the Global
Directory, opening a V5 database with a V6 process automatically upgrades fields in the database
fileheader.

A database created with V6 supports up to 992Mi blocks and is not backward compatible. V6 databases
that take advantage of V6 limits on key size and records size cannot be downgraded. Use MUPIP
DOWNGRADE -VERSION=V5 to downgrade a V6 database back to V5 format provided it meets
the database downgrade requirements. For more information on downgrading a database, refer to
Downgrading to V5 or V4.

Important

A V5 database that has been automatically upgraded to V6 can perform all GT.M
V6.2-002A operations. However, that database can only grow to the maximum size
of the version in which it was originally created. If the database is V5.0-000 through
V5.3-003, the maximum size is 128Mi blocks. If the database is V5.4-000 through
V5.5-000, the maximum size is 224Mi blocks. A database file created with V6.0-000 (or
above) can grow up to a maximum of 992Mi blocks. This means that, for example, the
maximum size of a V6 database file having 8KiB block size is 7936GiB (8KiB*992Mi).

If your database has any previously used but free blocks from an earlier upgrade cycle (V4 to V5),
you may need to execute the MUPIP REORG -UPGRADE command. If you have already executed the
MUPIP REORG -UPGRADE command in a version prior to V5.3-003 and if subsequent versions cannot
determine whether MUPIP REORG -UPGRADE performed all required actions, it sends warnings to the
operator log requesting another run of MUPIP REORG -UPGRADE. In that case, perform any one of the
following steps:

* Execute the MUPIP REORG -UPGRADE command again, or

* Execute the DSE CHANGE -FILEHEADER -FULLY_UPGRADED=1 command to stop the warnings.

Caution

Do not run the DSE CHANGE -FILEHEADER -FULLY_UPGRADED=1 command
unless you are absolutely sure of having previously run a MUPIP REORG -
UPGRADE from V5.3-003 or later. An inappropriate DSE CHANGE -FILEHEADE -
FULLY_UPGRADED=1 may lead to database integrity issues.

You do not need to run MUPIP REORG -UPGRADE on:

* A database that was created by a V5 MUPIP CREATE

* A database that has been completely processed by a MUPIP REORG -UPGRADE from V5.3-003 or
later.

For additional upgrade considerations, refer to Database Compatibility Notes.

V6.2-002A Upgrading to GT.M V6.2-002A

FIS
Page 12, February 06, 2019 FIS

To upgrade from a GT.M version prior to V5.000:

You need to upgrade your database files only when there is a block format upgrade from V4 to V5.
However, some versions, for example, database files which have been initially been created with V4
(and subsequently upgraded to a V5 format) may additionally need a MUPIP REORG -UPGRADE
operation to upgrade previously used but free blocks that may have been missed by earlier upgrade
tools.

* Upgrade your database files using in-place or traditional database upgrade procedure depending
on your situation. For more information on in-place/traditional database upgrade, see Database
Migration Technical Bulletin.

* Run the MUPIP REORG -UPGRADE command. This command upgrades all V4 blocks to V5 format.

Note

Databases created with GT.M releases prior to V5.0-000 and upgraded to a V5 format
retain the maximum size limit of 64Mi (67,108,864) blocks.

Database Compatibility Notes

* Changes to the database file header may occur in any release. GT.M automatically upgrades database
file headers as needed. Any changes to database file headers are upward and downward compatible
within a major database release number, that is, although processes from only one GT.M release can
access a database file at any given time, processes running different GT.M releases with the same
major release number can access a database file at different times.

* Databases created with V5.3-004 through V5.5-000 can grow to a maximum size of 224Mi
(234,881,024) blocks. This means, for example, that with an 8KiB block size, the maximum database
file size is 1,792GiB; this is effectively the size of a single global variable that has a region to itself; a
database consists of any number of global variables. A database created with GT.M versions V5.0-000
through V5.3-003 can be upgraded with MUPIP UPGRADE to increase the limit on database file size
from 128Mi to 224Mi blocks.

* Databases created with V5.0-000 through V5.3-003 have a maximum size of 128Mi (134, 217,728)
blocks. GT.M versions V5.0-000 through V5.3-003 can access databases created with V5.3-004 and
later as long as they remain within a 128Mi block limit.

* Database created with V6.0-000 or above have a maximum size of 1,040,187,392(992Mi) blocks.

* For information on downgrading a database upgraded from V6 to V5, refer to: Downgrading to V5 or
V4.

Stage 3: Replication Instance File Upgrade

V6.2-002A does not require new replication instance files if you are upgrading from V5.5-000. However,
V6.2-002A requires new replication instance files if you are upgrading from any version prior to

http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_Database_Migration.html
http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_Database_Migration.html

Upgrading to GT.M V6.2-002A V6.2-002A

GTM V6.2-002
FIS

February 06, 2019, Page 13

V5.5-000. Instructions for creating new replication instance files are in the Database Replication chapter
of the GT.M Administration and Operations Guide. Shut down all Receiver Servers on other instances
that are to receive updates from this instance, shut down this instance Source Server(s), recreate the
instance file, restart the Source Server(s) and then restart any Receiver Server for this instance with the
-UPDATERESYNC qualifier.

Note

Without the UPDATERESYNC qualifier, the replicating instance synchronizes with
the originating instance using state information from both instances and potentially
rolling back information on the replicating instance. The UPDATERESYNC qualifier
declares the replicating instance to be in a wholesome state matching some prior (or
current) state of the originating instance; it causes MUPIP to update the information
in the replication instance file of the originating instance and not modify information
currently in the database on the replicating instance. After this command, the
replicating instance catches up to the originating instance starting from its own
current state. Use UPDATERESYNC only when you are absolutely certain that
the replicating instance database was shut down normally with no errors, or
appropriately copied from another instance with no errors.

Important

You must always follow the steps described in the Database Replication chapter of
the GT.M Administration and Operations Guide when migrating from a logical dual
site (LDS) configuration to an LMS configuration, even if you are not changing GT.M
releases.

Stage 4: Journal Files Upgrade

On every GT.M upgrade:

* Create a fresh backup of your database.

* Generate new journal files (without back-links).

Important

This is necessary because MUPIP JOURNAL cannot use journal files from a release
other than its own for RECOVER, ROLLBACK, or EXTRACT.

Stage 5: Trigger Definitions Upgrade

If you are upgrading from V5.4-002A/V5.4-002B/V5.5-000 to V6.2-002A and you have database triggers
defined in V6.2-000 or earlier, you need to ensure that your trigger definitions are wholesome in the

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch07.html
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch07.html

V6.2-002A Upgrading to GT.M V6.2-002A

FIS
Page 14, February 06, 2019 FIS

older version and then run MUPIP TRIGGER -UPGRADE. If you have doubts about the wholesomeness
of the trigger definitions in the old version use the instructions below to capture the definitions delete
them in the old version (-*), run MUPIP TRIGGER -UPGRADE in V6.2-002A and then reload them as
described below.

You need to extract and reload your trigger definitions only if you are upgrading from V5.4-000/
V5.4-000A/V5.4-001 to V6.2-002A or if you find your prior version trigger definitions have problems.
For versions V5.4-000/V5.4-000A/V5.4-001 this is necessary because multi-line XECUTEs for triggers
require a different internal storage format for triggers which makes triggers created in V5.4-000/
V5.4-000A/V5.4-001 incompatible with V5.4-002/V5.4-002A/V5.4-002B/V5.5-000/V6.0-000/V6.0-001/
V6.2-002A.

To extract and reapply the trigger definitions on V6.2-002A using MUPIP TRIGGER:

1. Using the old version, execute a command like mupip trigger -select="*" trigger_defs.trg. Now,
the output file trigger_defs.trg contains all trigger definitions.

2. Place -* at the beginning of the trigger_defs.trg file to remove the old trigger definitions.

3. Using V6.2-002A, run mupip trigger -triggerfile=trigger_defs.trg to reload your trigger
definitions.

To extract and reload trigger definitions on a V6.2-002A replicating instance using $ZTRIGGER():

1. Shut down the instance using the old version of GT.M.

2. Execute a command like mumps -run %XCMD 'i $ztrigger("select")' > trigger_defs.trg . Now,
the output file trigger_defs.trg contains all trigger definitions.

3. Turn off replication on all regions.

4. Run mumps -run %XCMD 'i $ztrigger("item","-*") to remove the old trigger definitions.

5. Perform the upgrade procedure applicable for V6.2-002A.

6. Run mumps -run %XCMD 'if $ztrigger("file","trigger_defs.trg")' to reapply your trigger
definitions.

7. Turn replication on.

8. Connect to the originating instance.

Note

Reloading triggers renumbers automatically generated trigger names.

Downgrading to V5 or V4

You can downgrade a GT.M V6 database to V5 or V4 format using MUPIP DOWNGRADE.

Managing M mode and UTF-8 mode V6.2-002A

GTM V6.2-002
FIS

February 06, 2019, Page 15

Starting with V6.0-000, MUPIP DOWNGRADE supports the -VERSION qualifier with the following
format:

MUPIP DOWNGRADE -VERSION=[V5|V4]

-VERSION specifies the desired version for the database header.

To qualify for a downgrade from V6 to V5, your database must meet the following
requirements:

1. The database was created with a major version no greater than the target version.

2. The database does not contain any records that exceed the block size (spanning nodes).

3. The sizes of all the keys in database are less than 256 bytes.

4. There are no keys present in database with size greater than the Maximum-Key-Size specification
the database header, that is, Maximum-Key-Size is assured.

5. The maximum Record size is small enough to accommodate key, overhead, and value within a block.

If your database meets all the above requirements, MUPIP DOWNGRADE -VERSION=V5 resets the
database header to V5 elements which makes it compatible with V5 versions.

To qualify for a downgrade from V6 to V4, your database must meet the same downgrade requirements
that are there for downgrading from V6 to V5.

If your database meets the downgrade requirements, perform the following steps to downgrade to V4:

1. In a GT.M V6.2-002A environment:

a. Execute MUPIP SET -VERSION=v4 so that GT.M writes updates blocks in V4 format.

b. Execute MUPIP REORG -DOWNGRADE to convert all blocks from V6 format to V4 format.

2. Bring down all V6 GT.M processes and execute MUPIP RUNDOWN -FILE on each database file to
ensure that there are no processes accessing the database files.

3. Execute MUPIP DOWNGRADE -VERSION=V4 to change the database file header from V6 to V4.

4. Restore or recreate all the V4 global directory files.

5. Your database is now successfully downgraded to V4.

Managing M mode and UTF-8 mode

On selected platforms, with International Components for Unicode (ICU) version 3.6 or later installed,
GT.M's UTF-8 mode provides support for Unicode (ISO/IEC-10646) character strings. On other
platforms, or on a system that does not have ICU 3.6 or later installed, GT.M only supports M mode.

On a system that has ICU installed, GT.M optionally installs support for both M mode and UTF-8
mode, including a utf8 subdirectory of the directory where GT.M is installed. From the same source

http://icu-project.org

V6.2-002A Managing M mode and UTF-8 mode

FIS
Page 16, February 06, 2019 FIS

file, depending upon the value of the environment variable gtm_chset, the GT.M compiler generates
an object file either for M mode or UTF-8 mode. GT.M generates a new object file when it finds both
a source and an object file, and the object predates the source file and was generated with the same
setting of $gtm_chset/$ZCHset. A GT.M process generates an error if it encounters an object file
generated with a different setting of $gtm_chset/$ZCHset than that processes' current value.

Always generate an M object module with a value of $gtm_chset/$ZCHset matching the value
processes executing that module will have. As the GT.M installation itself contains utility programs
written in M, their object files also conform to this rule. In order to use utility programs in both
M mode and UTF-8 mode, the GT.M installation ensures that both M and UTF-8 versions of object
modules exist, the latter in the utf8 subdirectory. This technique of segregating the object modules by
their compilation mode prevents both frequent recompiles and errors in installations where both modes
are in use. If your installation uses both modes, consider a similar pattern for structuring application
object code repositories.

GT.M is installed in a parent directory and a utf8 subdirectory as follows:

* Actual files for GT.M executable programs (mumps, mupip, dse, lke, and so on) are in the parent
directory, that is, the location specified for installation.

* Object files for programs written in M (GDE, utilities) have two versions - one compiled with support
for Unicode in the utf8 subdirectory, and one compiled without support for Unicode in the parent
directory. Installing GT.M generates both versions of object files, as long as ICU 3.6 or greater is
installed and visible to GT.M when GT.M is installed, and you choose the option to install Unicode
support.

* The utf8 subdirectory has files called mumps, mupip, dse, lke, and so on, which are relative symbolic
links to the executables in the parent directory (for example, mumps is the symbolic link ../mumps).

* When a shell process sources the file gtmprofile, the behavior is as follows:

* If $gtm_chset is "m", "M" or undefined, there is no change from the previous GT.M versions to the
value of the environment variable $gtmroutines.

* If $gtm_chset is "UTF-8" (the check is case-insensitive),

* $gtm_dist is set to the utf8 subdirectory (that is, if GT.M is installed in /usr/lib/fis-gtm/
gtm_V6.2-002A_i686, then gtmprofile and gtmcshrc set $gtm_dist to /usr/lib/fis-gtm/
gtm_V6.2-002A_i686/utf8).

* On platforms where the object files have not been placed in a libgtmutil.so shared library,
the last element of $gtmroutines is $gtm_dist($gtm_dist/..) so that the source files in the
parent directory for utility programs are matched with object files in the utf8 subdirectory. On
platforms where the object files are in libgtmutil.so, that shared library is the one with the object
files compiled in the mode for the process.

For more information on gtmprofile and gtmcshrc, refer to the Basic Operations chapter of GT.M
Administration and Operations Guide.

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch03.html

Setting the environment variable TERM V6.2-002A

GTM V6.2-002
FIS

February 06, 2019, Page 17

Compiling ICU

GT.M versions prior to V5.3-004 require exactly ICU 3.6, however, V5.3-004 (or later) accept ICU 3.6 or
later. For sample instructions to download ICU, configure it not to use multi-threading, and compile it
for various platforms, refer to Appendix C: Compiling ICU on GT.M supported platforms of the GT.M
Administration and Operations Guide.

Although GT.M uses ICU, ICU is not FIS software and FIS does not support ICU. The sample
instructions for installing and configuring ICU are merely provided as a convenience to you.

Also, note that download sites, versions of compilers, and milli and micro releases of ICU may have
changed since the dates when these instructions were tested rendering them out-of-date. Therefore,
these instructions must be considered examples, not a cookbook. In particular, ICU changed its
numbering scheme, such that after version 4.8, the next version of ICU was 49. As GT.M continues
to use the original numbering scheme, you must convert the new version number to the old in the
environment variable gtm_chset. For example, if icu-config −−version reports 52.1, you should set
gtm_icu_version to 5.2.

Setting the environment variable TERM

The environment variable TERM must specify a terminfo entry that accurately matches the terminal
(or terminal emulator) settings. Refer to the terminfo man pages for more information on the terminal
settings of the platform where GT.M needs to run.

* Some terminfo entries may seem to work properly but fail to recognize function key sequences or
fail to position the cursor properly in response to escape sequences from GT.M. GT.M itself does
not have any knowledge of specific terminal control characteristics. Therefore, it is important to
specify the right terminfo entry to let GT.M communicate correctly with the terminal. You may need
to add new terminfo entries depending on your specific platform and implementation. The terminal
(emulator) vendor may also be able to help.

* GT.M uses the following terminfo capabilities. The full variable name is followed by the capname in
parenthesis:

auto_right_margin(am), clr_eos(ed), clr_eol(el), columns(cols), cursor_address(cup),
 cursor_down(cud1), cursor_left(cub1), cursor_right(cuf1), cursor_up(cuu1),
 eat_newline_glitch(xenl), key_backspace(kbs), key_dc(kdch1),key_down(kcud1),
 key_left(kcub1), key_right(kcuf1), key_up(kcuu1), key_insert(kich1),
 keypad_local(rmkx),keypad_xmit(smkx), lines(lines).

GT.M sends keypad_xmit before terminal reads for direct mode and READs (other than READ *) if
EDITING is enabled. GT.M sends keypad_local after these terminal reads.

Installing Compression Libraries

If you plan to use the optional compression facility for replication, you must provide the compression
library. The GT.M interface for compression libraries accepts the zlib compression libraries without
any need for adaptation. These libraries are included in many UNIX distributions and are downloadable

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/compiling_icu.html

V6.2-002A Installing Compression Libraries

FIS
Page 18, February 06, 2019 FIS

from the zlib home page. If you prefer to use other compression libraries, you need to configure or
adapt them to provide the same API provided by zlib. Simple instructions for compiling zlib on a
number of platforms follow. Although GT.M can use zlib, zlib is not FIS software and FIS does not
support zlib. These instructions are merely provided as a convenience to you.

If a package for zlib is available with your operating system, FIS suggests that you use it rather than
building your own.

Solaris/cc compiler from Sun Studio:

./configure −−sharedmake CFLAGS="-KPIC -m64"

HP-UX(IA64)/HP C compiler:

./configure −−sharedmake CFLAGS="+DD64"

AIX/XL compiler:

./configure −−sharedAdd -q64 to the LDFLAGS line of the Makefilemake CFLAGS="-q64"

Linux/gcc:

./configure −−sharedmake CFLAGS="-m64"

By default, GT.M searches for the libz.so shared library in the standard system library directories (for
example, /usr/lib, /usr/local/lib, /usr/local/lib64). If the shared library is installed in a non-standard
location, before starting replication, you must ensure that the environment variable LIBPATH (AIX) or
LD_LIBRARY_PATH (other platforms) includes the directory containing the library. The Source and
Receiver Server link the shared library at runtime. If this fails for any reason (such as file not found,
or insufficient authorization), the replication logic logs a DLLNOOPEN error and continues with no
compression.

http://www.zlib.net

GT.M V6.2-002
FIS

February 06, 2019, Page 19

Change History

V6.2-002A

Fixes and enhancements specific to V6.2-00A are:

Id Prior Id Category Summary

GTM-8376 - MUMPS Fix certain cases of $SELECT() within a
Boolean expression

V6.2-002

Fixes and enhancements specific to V6.2-002 are:

Id Prior Id Category Summary

GTM-1759 C9812-000745 MUMPS See GTM-8239

GTM-5428 S9E05-002459 MUMPS See GTM-7949

GTM-5688 C9F04-002718 MUMPS $ZPIN and $ZPOUT allow USE and
$ZSOCKET() to access one side of a split
device $PRINCIPAL

GTM-5894 C9G06-002801 MUPIP Option to preallocate the database file
space on disk

GTM-6112 C9I01-002941 MUMPS See GTM-8239

GTM-6524 C9K01-003223 MUMPS Fix stack alignment on Linux X86-64 to
prevent rare process failures.

GTM-6638 C9K06-003289 DB Reduce epoch duration by minimizing the
number of dirty buffers to flush

GTM-7409 - DB See GTM-6638

GTM-7725 - MUMPS Fix for special case in $$ZHOROLOG^
%POSIX in GT.M POSIX plugin

GTM-7783 - MUPIP Source Server Abnormal Exit Logging

GTM-7894 - MUMPS See GTM-6524

GTM-7917 - DB $ORDER(gvn,-1) speed improvement

GTM-7949 - MUMPS $ZUT ISV for UTC and $ZHOROLOG ISV
for microseconds and offset from UTC

#GTM-8239
#GTM-7949
#GTM-8239
#GTM-6638
#GTM-6524

Change History V6.2-002

FIS
Page 20, February 06, 2019 FIS

Id Prior Id Category Summary

GTM-8041 - Other Utilities Fix Debian Bug #775302 associated with fis-
gtm-6.2-000

GTM-8071 - DB Add trigger ISV $ZTDELIM

GTM-8087 - MUMPS ZSHOW "C" lists loaded external call
packages and routine contents

GTM-8167 - MUMPS Fixes to JOB command for long and many
arguments

GTM-8183 - DB Protect against JNLBADRECFMT errors
resulting from file block size larger than
the OS page size

GTM-8187 - MUPIP MUPIP REORG -TRUNCATE improvement
to return more space

GTM-8197 - MUMPS Better error for triggers specified with long
names as arguments

GTM-8214 - DB Fix an edge case in $ZTRIGGER() and
MUPIP TRIGGER

GTM-8219 - MUMPS Additional functionality for WRITE /TLS
and $ZSOCKET()

GTM-8221 - MUMPS JOBLVN2LONG message no longer reports
sizes

GTM-8224 - MUMPS Cleaner handling of complex
ZBREAK management and better
REQRLNKCTLRNDWN messages

GTM-8228 - MUMPS Minimize the impact of a mass exodus of
processes holding LOCKs

GTM-8229 - MUMPS GT.M correctly handles I/O errors when its
stdout and stderr are conjoined

GTM-8231 - MUMPS VIEW and $VIEW() fixes, particularly
related to POOLLIMIT

GTM-8232 - MUPIP Prevent MUPIP from interacting with
shell utilities in ways that disrupt terminal
characteristics

GTM-8235 - Other Utilities GT.M reference encryption plugin works
with GPG libraries compiled on AIX

GTM-8237 - MUMPS $ZSEARCH() skips symbolic links that
result in loops

V6.2-002 Change History

GTM V6.2-002
FIS

February 06, 2019, Page 21

Id Prior Id Category Summary

GTM-8238 - MUMPS ZRUPDATE better handles specific types of
arguments and recognizes a question-mark
(?) wild-card character

GTM-8239 - MUMPS Prevent extraneous newlines to
$PRINCIPAL; correctly maintain $X and $Y
when mixing output from stderr and stdout

GTM-8240 - MUMPS Setting the maximum number of auto-
relink routine entries

GTM-8241 - MUMPS Improvement in M LOCK efficiency

GTM-8242 - DB Fix an interaction between a KILL with a
trigger and MUPIP REORG TRUNCATE or
ROLLBACK ONLINE

GTM-8245 - DB Fix MERGE gvn2=gvn1 when gvn1 falls in
a spanning node and has an effective key
shorter than that of gvn2

GTM-8246 - MUMPS $ZWIDTH() respects [NO]BADCHAR
setting

GTM-8247 - Other Utilities ^%RSEL recognizes auto-relink directories

GTM-8249 - MUMPS JOB command takes 32 arguments instead
of 28

GTM-8256 - DB Fix to a rare condition that could damage
data SET from within trigger code

GTM-8258 - MUMPS Fix VIEW "NOISOLATION":strexpr where
strexpr is a variable containing only "+" or
"-"

GTM-8261 - MUMPS VIEW "FULL_BOOLEAN" and variants
take effect immediately for indirection and
XECUTE

GTM-8269 - DB Fix edge case involving NOISOLATION, a
TP transaction with SET and KILL in the
same block as a concurrent SET

GTM-8272 - Other Utilities PINENTRY routine robustness
improvements

GTM-8273 - MUMPS Using ZPrint or $TEXT() with relative
entryrefs works correctly

GTM-8274 - Other Utilities See GTM-8275

#GTM-8275

Change History V6.2-002

FIS
Page 22, February 06, 2019 FIS

Id Prior Id Category Summary

GTM-8275 - Other Utilities Improvements to the reference encryption
plug-in that deal more efficiently with
GnuPG

GTM-8277 - DB UPGRADE and other MUPIP TRIGGER or
$ZTRIGGER() operations make identical
trigger definitions

GTM-8278 - DB More restrictive enforcement of
authorizations in certain unusual cases

GTM-8280 - MUMPS Auto-relink facility appropriately manages
memory and authorization of new objects

GTM-8282 - MUMPS Any time spent processing an INTRPT
counts against a LOCK timeout

GTM-8286 - DB Better critical section management under
unusual and stressful conditions

GTM-8287 - Other Utilities DBCERTIFY corrections

GTM-8290 - MUMPS Fix an occassional SIG−−11 caused by
recursively relinking a routine containing
ZBREAK breakpoints

GTM-8291 - DB Fix $ORDER() within a global subscript
within a Boolean expression and with a
non-literal direction expression

GTM-8295 - MUMPS Timed commands won't end early by up to
one millisecond

GTM-8298 - DB New journal files on a switchover and
other changes to make $ZQGBLMOD() less
pessimistic

GTM-8299 - DB Ensure timely Journal Flush after MM
database extension

GTM-8300 - DB LASTWRITERBYPAS Warning

GTM-8303 - MUPIP Prevent segmentation violations from
terminating a MUPIP process with a signal,
such as SIGTERM

GTM-8306 - MUMPS $ZC acts as a synonym for $ZCSTATUS

GTM-8315 - Other Utilities gtmprofile corrcetly configures
gtm_icu_version

V6.2-002 Change History

GTM V6.2-002
FIS

February 06, 2019, Page 23

Id Prior Id Category Summary

GTM-8316 - Other Utilities DSE no longer recognizes the -
SPIN_SLEEP_CNT qualifier for CHANGE -
FILEHEADER, as it has no effect

GTM-8317 - MUMPS INVTMPDIR and its avoidance by
gtmsecshr

GTM-8320 - MUMPS GTM_FATAL_ERROR* files have a .txt
extension and avoid an occassional SIG-11

GTM-8330 - MUMPS Expediciously deal with processes holding
auto-relink resources for inappropriate
times

GTM-8332 - MUPIP Ensure journal time stamps are always
increasing

GTM-8333 - MUMPS Prevent a <CTRL-C> early in process
startup from causing a SIG-11

GTM-8334 - MUPIP Improved idenpotency for MUPIP
JOURNAL -ROLLBACK and -RECOVER

GTM-8335 - DB Incorrect upgrades from V5.0-000,
V5.3-003, V5.3-004

GTM-8339 - MUMPS GT.M processes with open PIPE devices
terminate promptly when interrupted by a
terminal signal

GTM-8350 - DB TPRESTART messages from GT.M
processes include the $ZPOSITION
information

GTM-8360 - MUPIP Assorted enhancements to MUPIP
EXTRACT and MUPIP LOAD operations
on a binary extract

GTM-8364 - MUMPS Prevent <CTRL-C> from killing a process
as it is starting

GTM-8365 - MUMPS Close a small window where an interrupt
could cause a process to terminate

GTM-8369 - MUMPS Fix file positioning for sequential disk files
greater than 4GiB

GTM-8370 - MUMPS ZSHOW works correctly when a MERGE
command invokes a trigger which results
in a runtime error and ZGOTO transfers
control out of trigger code

Change History V6.2-002

FIS
Page 24, February 06, 2019 FIS

Id Prior Id Category Summary

GTM-8371 - MUMPS $QUERY(lvn) works correctly in the case
lvn was previously the target of a ZSHOW
"V" when no variables existed.

GT.M V6.2-002
FIS

February 06, 2019, Page 25

M-Database Access

* Intended to reduce spikes in response time at epochs caused by flushing global buffers and
the filesystem cache (using fsync()), the database segment setting [NO]EPOCHTAPER controls
whether GT.M tries to minimize epoch duration by reducing the number of dirty buffers in
anticipation of an approaching epoch (time-based or due to a journal file auto-switch). GDE ADD
and CHANGE REGION, DSE CHANGE FILEHEADER and MUPIP SET all have -[NO]EPOCHTAPER
qualifiers. As a setting of EPOCHTAPER (i.e., to taper) resulted in throughput equal to or better than
NOEPOCHTAPER in all workloads tested, it is the default. A setting of NOEPOCHTAPER reverts to
the prior behavior should you find that preferable.. (GTM-6638)

* See GTM-6638. (GTM-7409)

* $ORDER(gvn,-1) has a code path only slightly longer than $ORDER(gvn,1); previously a longer code
path made the reverse $ORDER(), or $ZPREVIOUS(), take close to twice the time of a $ORDER() for
the identical gvn. Also, MERGE and $QUERY() show a modest improvement. (GTM-7917)

* Within a SET trigger context, $ZTDE[LIM] returns the piece separator, as specified by -delim in the
trigger definition. This allows triggers to extract updated pieces defined in $ZTUPDATE without
having the piece separator hard coded into the routine. Outside of a SET trigger context, $ZTDELIM
is null. Previously GT.M did not implement $ZTDELIM. (GTM-8071)

* GT.M appropriately handles a case where the file system block size exceeds the operating system
page size. Previously, such a situation caused journal file damage (e.g. JNLBADRECFMT errors) on
rare occasions. This was only encountered in the GT.M development environment, and was never
reported by a user. (GTM-8183)

* $ZTRIGGER() and MUPIP TRIGGER work reliably; previously they could occasionally produce
segmentation violations (SIG-11) or garbling of trigger names. This issue was discovered in the GT.M
development environment and was never reported by any user. (GTM-8214)

* KILL appropriately handles the case where there the target gvn has a KILL trigger and there is
a concurrent MUPIP REORG TRUNCATE or ROLLBACK ONLINE that moves the root block of
the target gvn. Previously, in this unusual case the target gvn might not be killed. This was only
encountered in the GT.M development environment and was never reported by a user. (GTM-8242)

* MERGE gvn2=gvn1 where gvn1 falls in a spanning node, either because of its own key-
value length or the key-value length of one of its descendent nodes that starts in the same
data block as gvn1, works correctly. Previously, if the block size of the region holding gvn2
was less than that of the region holding gvn1 or $LENGTH($VIEW("YGVN2GDS",gvn2))>
$LENGTH($VIEW("YGVN2GDS",gvn1)), such a MERGE damaged gvn2 so that a subsequent
reference to it resulted in a TPFAIL error with retry codes uuuu. (GTM-8245)

* SETs within trigger code that updates nodes having the same unsubscripted name as the node with
the trigger work reliably; previously there was a small chance such a SET placed a garbled value in
the destination. This was only encountered in the GT.M development environment and was never
reported by a user. (GTM-8256)

#GTM-6638

M-Database Access

FIS
Page 26, February 06, 2019 FIS

* GT.M correctly handles a KILL of a NOISOLATION global node within a TP transaction where
the same transaction had SET at least one node in the same GDS block as the node being KILL'd.
Previously, if a concurrent SET from another process happened at the same time as the KILL and
both updated the same GDS block and the KILL action made the block empty, GT.M incorrectly
applied the NOISOLATION optimization which meant that the concurrent SET was lost. Note that
any missing SET was captured in the journal and by replication. (GTM-8269)

* Trigger upgrades with MUPIP TRIGGER UPGRADE and trigger maintenance with $ZTRIGGER()
and MUPIP TRIGGER actions, other than UPGRADE, refer to the same trigger. In V6.2-001, identical
triggers could appear as duplicates, and attempts to delete triggers that had been upgraded did not
work. The workaround was to delete all triggers with a "-*", and then load the correct set of triggers.
This was only encountered in the GT.M development environment and was never reported by a user.
(GTM-8277)

* When execution of GT.M is restricted to members of a group, regardless of database file owner and
group, and independent of whether the owner is a member of the group, shared resources never have
world permissions. When the owner is not a member of the group, and when execution of GT.M
is restricted to members of a group, the group of all GT.M-generated shared resources is the group
permitted to execute GT.M. Previously, in this edge case, GT.M created shared resources with world
access. GT.M sets permissions for shared resources (journal files, shared memory, and semaphores)
that are rational, but as restrictive as possible, in certain implausible but technically feasible edge
cases; for example: a database file with read-only access for an owner, who is not a member of its
group, with read-write group access. Previously, in such edge cases, it was possible for journal file
and shared memory permissions to be impractical; e..g, with the combination of permissions above, a
journal file created by a user who is a member of the group (but not the owner of the database) could
have read-only permissions for the creator of the journal file. Note that FIS recommends against
attempting such dubious group memberships and file permissions. In addition, When installing GT.M
with the option to restrict GT.M access to members of a group, the configure script terminates with
the GROUPNOTVALID error if the group is root or bin; and with the NOTINGROUP error if owner
is not (a) root, (b) bin, or (c) a member of the group. Previously, the configure script did not check for
these unusual combinations. (GTM-8278)

* GT.M deals appropriately with a situation when high contention for a database resource results
in all available mutex_slots being used. Previously such an unusually high contention could cause
processes to inappropriately wait a couple of seconds for a resource even after it became available.
Note that in releases V6.0-000 through V6.1-000, a mutex queue slot leak, fixed in V6.2-000 with the
tracking number GTM-7804, a leak in mutex queue slots could cause the same behavior by causing all
slots to appear to be in use. (GTM-8286)

* $ORDER(gvn,expr) correctly handles the case where expr is not a literal; previously if a function
with these characteristic appeared in a global subscript within a Boolean expression, this somewhat
unusual case caused a segmentation violation (SIG-11). (GTM-8291)

* When an instance changes roles from a secondary (also known as a propagating primary) to
a primary (also known as a root primary), the first Source Server process on the primary, or
the MUPIP REPLICATE SOURCE ACTIVATE command for on-the-fly switching, creates a new
set of journal files for all journaled regions (which are also all replicated regions) in the global
directory. When called by lost (unreplicated) transaction processing logic on the root primary, the

M-Database Access

GTM V6.2-002
FIS

February 06, 2019, Page 27

new journal files make $ZQGBLMOD(gvn) less likely to report a false positive (1) as to whether
the node gvn was changed by a local update since the instance became the new root primary.
Note that by design $ZQGBLMOD() must be pessimistic, in that while a return value of 0 means
that the node has not changed, a return value of 1 reports that the node may have changed. For
applications that use $ZQGBLMOD() to attempt automatic lost (unreplicated) transaction processing,
making $ZQGBLMOD() less pessimistic means that falling back to manual reconciliation is less
likely. Starting a Receiver Server in a secondary instance and allowing it to communicate with the
Source Server no longer resets $ZQGBLMOD() on the primary instance. Although deployments
usually perform a ROLLBACK FETCHRESYNC before starting up a Receiver Server, starting a
secondary instance with AUTOROLLBACK, or inadvertently forgetting to perform a ROLLBACK
FETCHRESYNC previously reset internal state information used to compute $ZQGBLMOD() so
that all calls to $ZQGBLMOD() thereafter returned 1, thereby requiring manual reconciliation for
all lost (unreplicated) transaction processing using $ZQGBLMOD() to make this determination.
The workaround was to first perform a separate ROLLBACK FETCHRESYNC step, before starting
replication. In addition, $ZQGBLMOD() works on Supplementary Instance (SI) replication as it does
for Business Continuity (BC) replication; previously ROLLBACK always caused $ZQGBLMOD()
return 1 in SI environments. This was only encountered in the GT.M development environment
and was never reported by a user. Note that lost (unreplicated) transaction processing is always
the responsibility of the application designer. GT.M lacks the knowledge of application design
required to determine whether a zero return value means that it is safe to apply the update, and
$ZQGBLMOD() is only a tool to assist the application. (GTM-8298)

* For database segments opened with the MM access method, GT.M ensures it continuously flushes
journal buffers. Previously after at least one database file extension, when there were no active
updates, occasionally GT.M did not flush the journal buffers until subsequent updates filled journal
buffers, a VIEW "JNLFLUSH", or the exit of the last process with the database open for writing. This
was only encountered in the GT.M development environment and was never reported by a user.
(GTM-8299)

* In a case where the last process with a database open for writing bypasses the rundown on exit,
leaving associated the shared memory open, allocated and potentially unflushed, GT.M sends a
LASTWRITERBYPAS warning message to the system log. This can occur if the instance is frozen at
the time of the process exit. Previously, GT.M did not provide this notification. (GTM-8300)

* GT.M performs automatic database upgrades for all V5 and V6 versions. Previously, (a) versions
subsequent to V5.4-002A did not properly upgrade databases created in or upgraded to V5.3-003 and
V5.3-004; and (b) databases created in or upgraded to V5.0-000 had to first be upgraded to V5.1-000.
If you need to upgrade a V5.3-003 or V5.3-004 database to a version prior to V6.2-002, first upgrade
to V5.4-002A and then, as a second step upgrade, to the target version. If you need to upgrade a
V5.0-000 database to a version prior to V6.2-002, first upgrade to V5.2-000, and then to the version
prior to V6.2-002. This was only encountered in the GT.M development environment and was never
reported by a user. (GTM-8335)

* TPRESTART messages from GT.M processes include the $ZPOSITION of the line of M code that
caused the restart of the transaction; utilities leave this field blank. Previously, the restart recording
facility did not report this information. (GTM-8350)

GTM V6.2-002
Page 28, February 06, 2019 FIS

GT.M V6.2-002
FIS

February 06, 2019, Page 29

M-Other Than Database Access

* See GTM-8239 (GTM-1759)

* See GTM-7949. (GTM-5428)

* When $PRINCIPAL input is a terminal device and $PRINCIPAL output is /dev/null GT.M directs
WRITEs to $PRINCIPAL to /dev/null; previously, it sent such output to the $PRINCIPAL input
terminal. When $PRINCIPAL input and output are different sockets, GT.M treats them as separate
input and output SOCKET devices; previously, it set up a SOCKET device with only the input socket
so output went to the input socket. When $PRINCIPAL has different input/output devices, the USE
command recognizes intrinsic special variables $ZPIN or $ZPOUT and applies deviceparameters
to the input or output side of $PRINCIPAL, respectively. USE $PRINCIPAL continues to apply
appropriate deviceparameters to both input and output devices. A USE with any of the $PRINCIPAL
variants sets $IO to $PRINCIPAL. Previously, it was not possible to modify a split device separately.
$ZSOCKET() also accepts $ZPIN or $ZPOUT as its first argument and, if the device is a split SOCKET
device, supplies information on input or output side, respectively. In any context other than USE
or $ZSOCKET(), or if $PRINCIPAL is not a split device, $PRINCIPAL, $ZPIN and $ZPOUT are
synonyms. In the case of a split $PRINCIPAL, $ZPIN and $ZPOUT return the value of $PRINCIPAL
followed by the strings "< /" and "> /", respectively. Any attempt to OPEN $ZPIN or $ZPOUT results
in a DEVOPENFAIL error. Note: if $PRINCIPAL input and output are different SOCKETs, WRITE /
WAIT applies to the input side of the device. (GTM-5688)

* See GTM-8239 (GTM-6112)

* On Linux x86-64 the C stack is aligned to 16 bytes. Previously problems such as SIG-10 bus error or
SIG-11 segmentation faults could occur as a consequence of an 8-byte stack alignment. These were
only encountered in the GT.M development environment, and were never reported by a user. [Linux
x86-64] (GTM7894)(GTM-6524)

* $$ZHOROLOG^%POSIX returns the correct number of seconds and microseconds. Previously,
when the number of microseconds was 0, the function reported ten times the seconds count with no
fractional part. This functionality is actually provided by the POSIX plugin rather than core GT.M,
and was release in version r1 of the GT.M POSIX plugin, which is released independently. This
release note appears here as a matter of record. Note also that the new intrinsic special variables
$ZHOROLOG and $ZUT may provide you with comparable functionality at a lower computational
cost. (GTM-7725)

* See GTM-6524(GTM-7894)

* $ZUT (UNIX time, or universal time) returns the number of microseconds since January 1, 1970
00:00:00 UTC, which provides a time stamp for directly comparing different timezones. $ZUT
accuracy is subject to the precision of the system clock. $ZH[OROLOG] returns four comma-
separated numbers (e.g. "63638,39194,258602,14400"). The first two numbers are identical to
$HOROLOG, and for existing application code of the form $PIECE($HOROLOG,",",...), $ZHOROLOG
is a drop-in replacement. The third is the number of microseconds in the current second, and

#GTM-8239
#GTM-7949
#GTM-8239
#GTM-6524

M-Other Than Database Access

FIS
Page 30, February 06, 2019 FIS

the fourth is the number of seconds to be added to the time reported in the first two numbers to
determine the UTC time. Note that the fourth number can be positive or negative, and because the
time zone of the computer can have a different date from UTC, generating a UTC time from it may
require adjustment to both first and second pieces. (GTM-5428) (GTM-7949)

* ZSHOW "C" provides the list of loaded external call packages and their routines. Packages that
are accessible but have not been accessed are not reported. When a local or global variable is
targeted for output, the package and routine names are placed as subscripts for ease of programmatic
manipulation. ZSHOW "C" is included in ZSHOW "*". (GTM-8087)

* The JOB command accepts up to 28 routine arguments, each of which may be up to 8192 bytes long.
If any argument exceeds the limit, the JOB command issues a JOBPARTOOLONG error message.
Previously, the limit was 8190 bytes, but arguments exceeding 1024 may have been truncated,
included extraneous data, or resulted in a SIGABRT, and a JOB command exceeding the former 8190
byte limit incorrectly issued a JOBFAIL error message along with EBADF indicating: Job error in
socketpair. (GTM-8167)

* GT.M limits trigger names used as arguments to ZBREAK, ZPRINT and $TEXT() to 30 characters
in order to maintain the trailing pound-sign (#), which acts as an identifier that the object named is
a trigger. Previously, attempts to provide trigger name arguments of 31 or more characters to these
features caused them to issue a ZLINKFILE error rather than a TRIGNAMENF error. In addition,
GT.M recognizes the region-name selector on long trigger names in regions with long region names;
previously if the trigger existed but the combination of the trigger name and selector exceeded 31
characters, GT.M inappropriately produced a TRIGNAMENF error. (GTM-8197)

* The optional fourth expression (after the tlsid) in the argument of a WRITE /TLS command specifies
an obfuscated password for the private key in the tlsid section of a configuration file. This key
overrides any existing password. Previously GT.M required an environment variable of the form
gtmtls_passwd_<tlsid> to specify an obfuscated password. The optional fifth expression in the
argument of a WRITE /TLS command specifies configuration file options that add to or replace
existing options in the section labeled tlsid. If there is no section with the label tlsid, GT.M creates a
new virtual section, which persists for the life of the process. These options use the same format as
the configuration file including the terminating semi-colon (";"). The format for WRITE /TLS is:

WRITE /TLS(option[,[timeout][,[tlsid][,[obfuscatedpassword][,options]]]])

When the second argument of $ZSOCKET() specifies "TLS" as the keyword expression, $ZSOCKET()
returns a string of the form "1,<SERVER|CLIENT>[,<tlsid>]" when the SOCKET is using TLS or
the empty string if it is not. The optional tlsid comes from the WRITE /TLS which enabled TLS on
the specified socket. The optional fourth argument specifies that $ZSOCKET() return additional
information where the argument may contain (case-insensitive) "CIPHER" and/or "OPTIONS"
separated by a comma. The returned information for "CIPHER" is the TLS protocol prefixed by "P:"
and the algorithm prefixed by "C:" and the information for OPTIONS is prefixed by "O:" delimited by
vertical-bars. For example to return the TLS options and cipher on the current socket in the device
specified by the local variable S:

WRITE $ZSOCKET(S,"TLS",,"options,CIPHER")

The missing third argument specifies the current socket. (GTM-8219)

M-Other Than Database Access

GTM V6.2-002
FIS

February 06, 2019, Page 31

* JOBLVN2LONG error message has been changed, and it no longer includes the maximum and
encountered ZWRITE representation lengths. Previously, it was reporting both sizes as 0 from the
parent process. The correct sizes were visible from the child process only. The child process now
reports an additional informational message, JOBLVNDETAIL, which includes those two sizes.
(GTM-8221)

* GT.M handles interactions between ZBREAK and recursive relink appropriately. Previously,
recursively linking a new version of an active routine, inserting ZBREAKs, relinking it again, could
cause a segmentation violation (SIG-11) or illegal instruction (SIG-4) when a routine which had
linked a pre-ZBREAK version of the routine with the ZBREAKs attempted to invoke it anew after
the ZBREAK version had disappeared from the stack. In addition, GT.M issues a more appropriate
REQRLNKCTLRNDWN error message in case an actively used rtnobj shared memory segment gets
deleted (by say an "ipcrm -m") and a new process tries to attach to that; previously one would get
a RELINKCTLERR error message. Also, in case an actively used relinkctl shared memory segment
gets deleted, the REQRLNKCTLRNDWN message has more detail indicating the shmid and the actual
error returned by the "shmat()" system call; previously the additional detail was absent. As result
of this effort GT.M produces somewhat smaller object files with a small uptick in performance.
(GTM-8224)

* On exit, processes release their M locks in a fast operation; previously it was possible for the release
to delay process termination. (GTM-8228)

* GT.M correctly handles I/O errors when its stdout and stderr are conjoined to a file, FIFO, or PIPE
device. Previously, when a process's stdout and stderr were conjoined to a file, FIFO, or PIPE device,
a failure to write to either of the streams, for instance in a broken pipe situation, could trigger a
segmentation violation (SIG-11). (GTM-8229)

* $VIEW("POOLLIMIT") with a missing size argument defaults to 0 (100% availability) and with a
missing or asterisk (*) region argument, applies to all regions; previously such inputs produced a
segmentation violation (SIG-11). In addition, VIEW("POOLLIMIT") for database regions with access
methods other than BG returns a zero (0); in V6.2-001, it could inappropriately return a non-zero
value. Also, error messages that contain VIEW/$VIEW() problematic arguments use ZWRITE format
to display non-graphic characters, and GT.M appropriately handles errors with VIEW/$VIEW()
region names; in V6.2-001 such errors could damage local storage of the bad name. (GTM-8231)

* $ZSEARCH() skips symbolic links that result in loops; previously it gave an error when the search
encountered such a link. (GTM-8237)

* ZRUPDATE rejects file-name arguments that are symbolic links or start with a percent-sign (%);
previously it accepted file names starting with '%' as well as symbolic links with a '.o' extension that
resolved to any file. In addition, ZRUPDATE recognizes question-mark (?) as a single character wild-
card; previously it did not. Also, ZRUPDATE always updates the existing shared memory relinkctl
information for a file with an existing entry; previously if the process had never previously accessed
the directory containing the entry and the directory no longer existed, ZRUPDATE inappropriately
failed to maintain the relinkctl memory. (GTM-8238)

* GT.M does not send extraneous newlines to principal devices that are files, PIPEs, or FIFOs.
Previously, in certain situations, such as during a ZSYSTEM command, or when processing an error,

M-Other Than Database Access

FIS
Page 32, February 06, 2019 FIS

GT.M could send extraneous newlines to file, pipe or FIFO principal devices (but not to terminal
principal devices). Additionally, if the stderr and stdout of a process are conjoined to a terminal or a
single file (e.g., with shell redirection), $X and $Y are correctly maintained, and application output
to stdout and error messages to stderr are correctly merged. Previously, under such circumstances
$X and $Y did not reflect the output to stderr, and lines written to stdout and stderr could be
commingled. Finally, receiving a signal, such as SIGTERM, while processing a READ command does
not result in an indeterminate hang. Previously, there was a small window in processing of the READ
command, receiving a signal during which could cause GT.M to hang indefinitely. Please review
scripting that captures and compares GT.M output to determine whether it is affected by this fix.
(GTM-1759)(GTM-6112)(GTM-8239)

* The environment variable gtm_autorelink_ctlmax specifies the maximum number of entries
for unique routine names in the relink control file created by a process for any directory, with a
minimum of 1,000, a maximum of 16,000,000 and a default of 50,000 if unspecified. If a specified
value is above or below the allowed range, the process logs the errors ARCTLMAXHIGH or
ARCTLMAXLOW respectively in the syslog, and uses the nearest acceptable limit instead. MUPIP
RCTLDUMP and ZSHOW "A" outputs include the maximum number of unique routine names
available in a relink control file. Previously (effective V6.2-001, when auto relink became production
grade software), relink control files for each directory had a fixed capacity of 1,000,000 unique
routine names. Note that any application code or scripting that parses the output of MUPIP
RCTLDUMP or ZSHOW "A" needs to be changed. [AIX, Linux x86_64, Solaris] (GTM-8240)

* Acquisition attempts by processes of M LOCKs held by other processes are lightweight with little
impact on database throughput. Previously, large numbers of processes - hundreds to thousands -
waiting for LOCKs held by existing processes and mapped to the shared memory of a database region
could interfere with one another and negatively impact database activity for the region. (GTM-8241)

* $ZWIDTH() respects the [NO]BADCHAR setting; previously it ignored this setting and always
reported invalid UTF-8 characters. (GTM-8246)

* The JOB command accepts up to 32 arguments and issues MAXACTARG error on the child's error
stream if the argument count is beyond the limit. The parent process continues to receive a JOBFAIL
if the number of arguments exceeds the limit. Previously, the limit was 28 and exceeding the limit
caused a GTMASSERT. (GTM-8249)

* VIEW "NOISOLATION":strexpr reports a VIEWGVN error if the strexpr is not a literal and contains
only a plus-sign or minus-sign; previously this caused a segmentation violation (SIG-11). (GTM-8258)

* Setting VIEW "[NO]FULL_BOOLEAN[WARN]" works appropriately in certain rare cases involving
indirection and direct mode, previously executed expressions retained the behavior from the setting
in effect at the time the code was compiled for execution. Also, compilation does not result in a
segmentation violation (SIG-11) in rare cases when switching back and forth between Boolean
modes. (GTM-8261)

* Inside a trigger, ZPRINT and $TEXT() work correctly when using just label and offset for the
entryref. Previously, neither ZPRINT nor $TEXT() would work correctly unless the trigger
routine name was included in the entryref. This was only encountered in the GT.M development
environment and was never reported by a user. (GTM-8273)

M-Other Than Database Access

GTM V6.2-002
FIS

February 06, 2019, Page 33

* The auto-relink facility appropriately manages memory when it encounters errors; previously under
unusual conditions it could leak memory. In addition, the facility carefully manages the propagation
of authorizations to new objects; previously in unusual circumstances it managed the permissions
incorrectly. MUPIP RUNDOWN -RELINKCTL when invoked with an argument that does not resolve
to an existing directory and does not match a previously existing directory with a left-over relinkctl
file produces a FILEPARSE error; previously such invocations did not produce any output. MUPIP
RUNDOWN -RELINKCTL for the every auto-relink-enabled directory in $gtmroutines, or specified
as an argument when no corresponding relinkctl file is found, follows the RLNKCTLRNDWNSUC
message with a TEXT message saying "No relinkctl file found"; previously MUPIP did not provide the
supplementary message. This was only encountered in the GT.M development environment and was
never reported by a user. (GTM-8280)

* Measurement of time for M LOCK timeouts is consistent with that of other timed operations, and
only includes the total elapsed time, although it makes a final attempt after returning from an
interrupt during which the time elapsed. Previously it included the elapsed time plus any time spent
handling interrupts, both interrupts internal to GT.M operation as well as executing $ZINTERRUPT().
This was only encountered in the GT.M development environment and was never reported by a user.
(GTM-8282)

* Recursive relink of a routine that has one or more breakpoints set works correctly. In GT.M
V6.2-001, this could occasionally cause the process to abnormally terminate with a segmentation
violation (SIG-11). This was only encountered in the GT.M development environment and was never
reported by a user. (GTM-8290)

* Timed commands wait the full duration of the specified time. Previously, the time interval could (if
interrupted just prior to completion by a MUPIP INTRPT or operations internal to the GT.M run-
time logic) be up to 1ms less than the specified time in rare occasions. The most observable effect of
such a small time interval was the possibility of two accesses to $HOROLOG separated by a HANG 1
returning the same value. (GTM-8295)

* WRITE or ZWRITE of $ZC now returns the same value as $ZCstatus. Previously WRITE $ZC always
returned zero and ZWRITE $ZC produced a GTMASSERT2. (GTM-8306)

* GT.M sends an INVTMPDIR error to the system log when $gtm_tmp is invalid. In addition, GT.M
bypasses $gtm_linktmpdir validation for the gtmsechsr image. Previously, if $gtm_tmp was invalid
and $gtm_linktmpdir was not defined, GT.M incorrectly sent an INVLINKTMPDIR error to the
system log. Also, if $gtm_linktmpdir was defined, an INVLINKTMPDIR error was sent to the
operator when gtmsecshr was started because the gtmsecshr wrapper converted the value to the
NULL string. (GTM-8317)

* In a fatal error situation, GT.M typically creates a GTM_FATAL_ERROR*.txt file before it exits.
GT.M skips the creation of the .txt file for M stack overflows or a SIG-11 addressing exceptions.
The .txt extension promotes the ability to easily open such files with common editors. Previously
the name of a GTM_FATAL_ERROR* file did not end with a .txt extension, and, under certain very
rare circumstances, GT.M could encounter a segmentation violation (SIG-11) when creating the
file, which at least partially masked the original failure. This was only encountered in the GT.M
development environment and was never reported by a user. (GTM-8320)

M-Other Than Database Access

FIS
Page 34, February 06, 2019 FIS

* GT.M deals with suspended processes holding shared resources used by auto-relink in a timely
fashion. Note that you should not suspend a GT.M process using shared resources, and almost
all GT.M processes do so. Previously, a process attempting to auto-relink, depending on the
inappropriately held resource, could wait up to approximately twenty minutes. (GTM-8330)

* GT.M protects against a SIGINT (generated by a <CTRL-C> with the default key binding) while
initializing a $PRINCIPAL terminal at process start up; previously, a SIGINT in a small window could
cause a segmentation violation (SIG-11). (GTM-8333)

* GT.M processes with open PIPE devices terminate promptly when interrupted by a terminal signal,
such as SIGTERM. Previously, sending a terminal signal to a GT.M process that had one or more
open PIPE devices could under very rare circumstances result in an indefinite hang. This was only
observed in the GT.M development environment and was never reported by a user. (GTM-8339)

* GT.M manages memory better during process start up. Previously, an interruption during a small
window in memory allocation could terminate a process without any error messages or dump files.
This was only observed in the GT.M development environment, and was never reported by a user.
(GTM-8364)

* GT.M processes correctly handle interrupts (such as a timer pop, <CTRL-C>, or a MUPIP INTRPT).
Previously interrupts received in very small windows of code could in rare cases terminate processes
in various ways including segmentation violations (SIG-11) or GTMASSERTs. This was only
observed in the GT.M development environment and was never reported by a user. (GTM-8365)

* OPEN and USE commands on sequential devices using deviceparameters APPEND, SEEK,
and TRUNCATE work for files over 4GiB in size. In V6.2-000 and V6.2-001, the TRUNCATE
mispositioned for files over 4GiB since V6.1-000. (GTM-8369)

* ZSHOW works correctly after a MERGE command that invokes a trigger (that is, the target of the
MERGE is a GVN) which in turn encounters a runtime error and transfers control out of the trigger
code using a ZGOTO. Previously, such a ZSHOW would abnormally terminate with a segmentation
violation (SIG-11). (GTM-8370)

* $QUERY(lvn) works correctly in the case lvn was previously the target of a ZSHOW "V" when no
variables existed. Previously this situation would cause $QUERY(lvn) to result in a segmentation
violation (SIG-11). (GTM-8371)

*
 $SELECT() works correctly in several scenarios where it previously did not.

* Effective V6.2-002, compiling nested calls to $SELECT() with both environment variables
gtm_boolean and gtm_side_effects undefined or set to zero (0) could occasionally terminate
processes with a segmentation violation (SIG-11).

* Effective V6.2-002, compiling nested calls to $SELECT() with gtm_boolean set to 1 or 2 could cause
a GTMASSERT2.

* Effective V6.2-002, $SELECT() incorrectly maintained $REFERENCE and the naked reference in
some cases.

M-Other Than Database Access

GTM V6.2-002
FIS

February 06, 2019, Page 35

* Effective V6.0-001, even with gtm_side_effects set to one (1) to specify that the code has
side effects, GT.M would evaluate $SELECT() out of order. KILL x WRITE x+$SELECT(1:
$INCREMENT(x)) is an example of code with side effects that did not maintain standard order of
evaluation even when compiled with gtm_side_effects set to 1.

Although the above cases describe the core of the previous behavior, it is likely that there are cases
that overlap the above in ways that are not obvious. When gtm_boolean and gtm_side_effects are
undefined (or set to zero), GT.M assumes that the code has no side effects other than $REFERENCE
and indirection, and can, and does, rearrange computation to improve performance: the evaluation
of operands in expressions, the order in which function call parameters are evaluated, etc. In order to
be more consistent with other optimizations, when neither gtm_boolean nor gtm_side_effects are set
to non-zero values, GT.M V6.2-002A rearranges computation to evaluate a $SELECT() that appears
within a Boolean expression only when its arguments contain a global variable or indirection,
where previously it always did. If such a $SELECT() has an argument containing an extrinsic ($$)
function call with side effects, results on V6.2-002A may differ from those on previous GT.M releases.
Note: as the rearranging can change from release to release, you may encounter unexpected and
varying results if you compile application code that has side effects with environment variables that
tell GT.M that it has no side effects. Where code contains side-effects, FIS strongly recommends
compiling it with gtm_side_effects and gtm_boolean set to 1. (GTM-8376)

GTM V6.2-002
Page 36, February 06, 2019 FIS

GT.M V6.2-002
FIS

February 06, 2019, Page 37

Utilities-MUPIP

* GT.M provides an option to preallocate blocks from the file system when creating or extending a
database file; by default UNIX file systems, and GT.M, use sparse (or lazy) allocation, which defers
actual allocation until blocks are first written. The GDE segment qualifier -[NO]DEFER_ALLOCATE,
with a default of DEFER_ALLOCATE, determines whether MUPIP CREATE preallocates blocks
on database creation, and determines whether subsequent extensions also preallocate. The MUPIP
SET qualifier -[NO]DEFER_ALLOCATE provides a mechanism to control GT.M behavior when
subsequently extending existing database files, whether using MUPIP EXTEND or auto-extend.
To switch an existing database file so it immediately preallocates all blocks, first use MUPIP SET -
NODEFER_ALLOCATE to set the switch in the database file header, followed by MUPIP EXTEND -
BLOCKS=n, where n >= 0. The DSE DUMP -FILEHEADER ("Defer allocation" field) and GDE SHOW
("DALL" field) show the setting of the switch for each database file. Failures to preallocate space
produce a PREALLOCATEFAIL error. On platforms where GT.M does not support preallocation (HP-
UX and Solaris), although GDE accepts -NODEFER_ALLOCATE, MUPIP CREATE ignores it and sets
the database file to DEFER_ALLOCATE. On those platforms, any attempt to change this flag with
MUPIP SET produces a NODFRALLOCSUPP error.

In testing this enhancement, FIS exposed a bug in the Linux ext4 file system which is
present in the upstream Linux kernel since at least 3.10, and which is fixed by kernel commit
d2dc317d564a46dfc683978a2e5a4f91434e9711 (search for d2dc317d564a46dfc683978a2e5a4f91434e9711
at https://www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3). The Red Hat Bugzilla identifier
for the bug is 1213487. We are also investigating the possibility of a different bug in ext3 and jfs
filesystems that may be triggered by use of NODEFER_ALLOCATE. Although the bug appears to be
very rare, it manifests itself as a database block which is all zeros (ext4), or zero data bytes (ext3 and
jfs) resulting in data loss. Please avoid NODEFER_ALLOCATE for database files on Linux ext3, ext4,
or jfs file systems. The default behavior of DEFER_ALLOCATE avoids the bugs. On Linux, place any
database files for which you wish to use use NODEFER_ALLOCATE on xfs file systems.[AIX, Linux]
(GTM-5894)

* The source server sends a REPLSRCEXITERR message to the system log when the server exits
abnormally; previously GT.M did not provide notification of such an event. (GTM-7783)

* MUPIP REORG TRUNCATE always relocates global root blocks if there is room to relocate them
nearer to the beginning of a database file; previously, it could leave them unrelocated under certain
conditions thereby limiting the amount of space returned to the file system. The workaround was to
repeat the operation as soon as possible. (GTM-8187)

* MUPIP commands that produce a lot of output (e.g. MUPIP RCTLDUMP, MUPIP REORG etc.)
correctly maintain terminal characteristics in case they are used in a UNIX pipeline involving other
tools (e.g. "more") that also play with terminal characteristics. Previously this could result in the
terminal not echoing characters once the MUPIP command returned (more likely if the command
was not allowed to run to completion). A workaround was to issue a "stty sane" to the shell on
completion. (GTM-8232)

https://www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3

Utilities-MUPIP

FIS
Page 38, February 06, 2019 FIS

* Terminating a MUPIP process with a signal, such as SIGTERM, does not result in segmentation
violations (SIG-11). Previously, sending a signal to a MUPIP process in a small window shortly
after its start-up could cause a segmentation violation (SIG-11). This was only encountered in the
GT.M development environment and was never reported by a user. [AIX, SunOS, Linux x86_64]
(GTM-8303)

* GT.M ensures that timestamps of successive records in a journal file as well as across journal files
that were switched on-the-fly (e.g. auto switches) never decrease. Previously this was not ensured
which meant that in rare cases a later update could have an older/lesser timestamp in the journal
record even though the system time did not go backward. This in turn could affect time related
MUPIP JOURNAL commands (e.g. time-based backward recovery etc.) This was only encountered in
the GT.M development environment and was never reported by a user. (GTM-8332)

* MUPIP JOURNAL - ROLLBACK and -RECOVER handle being interrupted appropriately. Previously,
in a rare combination of circumstances, it was possible for a rollback/recover to lose data, or issue
incorrect EPOCHTNHI errors, after an interrupted attempt. This was only encountered in the GT.M
development and testing environment, and was never reported by a user. (GTM-8334)

* MUPIP EXTRACT in binary format can include global variable nodes from both encrypted and
unencrypted regions. When an extract includes data from one or more encrypted regions, MUPIP
EXTRACT uses a level 8 format (the first 26 characters of the label are "GDS BINARY EXTRACT
LEVEL 8"), which cannot be loaded by MUPIP LOAD of earlier GT.M releases. MUPIP LOAD
attempts to read extracts of level 7 format using a heuristic approach, which can fail with an error,
but we have found typically successful. Previously, extracts from V6.1-000, V6.2-000 and V6.2-001
(extract format level 7) that included both encrypted and unencrypted regions caused MUPIP LOAD
to behave badly, including termination with a segmentation violation (SIG-11) or loading incorrect
data (the latter, while theoretically possible, was never reported by user). The workaround for
loading an extract from any of those three versions was to create separate extracts for encrypted
regions and unencrypted regions. Additionally, MUPIP LOAD can read extracts of level 5 format.
Previously, MUPIP LOAD failed loading extracts of that version with an error. (GTM-8360)

GT.M V6.2-002
FIS

February 06, 2019, Page 39

Utilities-Other Than MUPIP

* The configure install script compiles M object files in UTF-8 mode as long as it finds at least
one UTF-8 locale. Previously, the configure script required the en_US.UTF-8 locale in order to
compile object files in UTF-6 mode. Also, the gtminstall script displays any errors produced by
the configure script output; previously, the gtminstall script masked all configure script output
inappropriately masking error information. These two changes fix Debian Bug #775302 associated
with fis-gtm-6.2-000. (GTM-8041)

* On AIX, the reference implementation of the encryption plugin works as expected when using GPG
libraries compiled using instructions from Appendix D (Building Encryption Libraries) of the GT.M
Administration and Operations Guide.

The reference implementation of the encryption plugin included in GT.M versions V5.5-000 through
V6.2-001 referenced a non-standard compilation of the GPGME encryption library (libgpgme).
Without the solution below, the administrators setting up the database will encounter either %GTM-
E-CRYPTINIT or %GTM-E-CRYPTDLNOOPEN examples below, with extended detail indicating a
failure to load GPGME or the encryption reference plugin library.

%GTM-E-CRYPTINIT, Could not initialize encryption library while opening encrypted file
 gtm.dat.
Error initializing GpgME: GPGME/No such file or directory

%GTM-E-CRYPTDLNOOPEN, Could not load encryption library while opening encrypted file ffff.
 Could not load module llll.

The solution to this problem required either recompilation of the reference implementation
encryption plugin or a modification of the installed GPGME library. FIS strongly recommends
recompiling the reference implementation encryption plugin. Please see the section "Plugin
Architecture & Interface" packaging in Chapter 12 (Database Encryption) of the GT.M
Administration and Operations Guide for compilation instructions. If you have a reason that requires
you to modify the GPG libraries after installation, and have GT.M support from FIS, contact your
support channel. [AIX] (GTM-8235)

* %RSEL handles $ZOUTINES directories designated for auto-relink; previously it ignored such
directories. (GTM-8247)

* The PINENTRY routine used for unattended password entry does not create temporary directories
or files when $gtm_dist and $gtmroutines are properly specified. If the routine encounters an
error, it hands off the password request to the system default pinentry program. The PINENTRY
routine only fails when GTMXC_gpgagent is not defined correctly. Typically users encounter
this problem during database setup. Previously, the PINENTRY routine always created temporary
directories and files and did not support a hand off to the system pinentry program which resulted in
a CRYPTKEYFETCHFAIL error. (GTM-8272)

* See GTM-8275.(GTM-8274)

#GTM-8275

Utilities-Other Than MUPIP

FIS
Page 40, February 06, 2019 FIS

* The reference implementation of the GT.M plug-in makes appropriately efficient use of GnuPG,
under all conditions, but especially when multiple databases and devices use the same key file.
Previously, recent versions of GnuPG included a component that greatly benefits from this change.
Because the plug-in stops processing as soon as it finds a key it is looking for, a given look up does
not detect or report subsequent errors in the configuration file. Previously, such subsequent errors
could stop GT.M from using keys specified even in the correctly specified part of a configuration file.
Note that this reference plug-in is compatible with V6.2-000 and V6.2-001.(GTM-8274)(GTM-8275)

* DBCERTIFY CERTIFY correctly handles a split in the root level of a global variable tree that
occurs after a SCAN. This was previously reported as fixed in V5.2-000A as part of GTM-5873
(C9G04-002790), but had a regression in V6.0-001 due to fixes made for GTM-7559. Also, it no longer
gives occasional spurious DBPREMATEOF or DBCINTEGERR errors. Previously these (fortunately
rare) conditions required reverting to a V4 format database followed by repeating the scan and
upgrade. This was only encountered in the GT.M development environment and was never reported
by a user. (GTM-8287)

* The gtmprofile setup script correctly handles ICU versions ending in zero, such as 50, when defining
gtm_icu_versions; previously gtmprofile inappropriately defined gtm_icu_version as just an integer
instead of a decimal value. The workaround was to edit the script produced by gtmprofile. This
was only encountered in the GT.M development environment and was never reported by a user.
(GTM-8315)

* DSE CHANGE FILEHEADER produces a CLIERR, Unrecognized option : SPIN_SLEEP_CNT error
when given the long-deprecated SPIN_SLEEP_TIME field, which is also not displayed by the DSE
DUMP FILEHEADER command. Previously DSE accepted this qualifier, which was harmless.
(GTM-8316)

GT.M V6.2-002
FIS

February 06, 2019, Page 41

Error and Other Messages

ARCTLMAXHIGH

ARCTLMAXHIGH, The environment variable XXXX = YYYY is too high. Assuming the maximum
acceptable value of ZZZZ

Run Time Warning: The environment variable named XXXX that controls the maximum number
of auto-relink routine entries is assigned a value (YYYY) that is too high. MUMPS will set maximum
routine count to ZZZZ and continue normal operation.

Action: Please set environment variable XXXX to a value between 1,000 and 16,000,000.

ARCTLMAXLOW

ARCTLMAXLOW, The environment variable XXXX = YYYY is too low. Assuming the minimum
acceptable value of ZZZZ

Run Time Warning: The environment variable named XXXX that controls the maximum number of
auto-relink routine entries is assigned a value (YYYY) that is too low. MUMPS will set maximum routine
count to ZZZZ and continue normal operation.

Action: Please set environment variable XXXX to a value between 1,000 and 16,000,000.

INVLINKTMPDIR

INVLINKTMPDIR, Value for $gtm_linktmpdir is either not found or not a directory: dddd

Run Time Error: Indicates the process cannot access directory dddd, which it needs in order to do auto-
relink as specified by its $ZROUTINES; the directory may not exist as a directory or the process lacks
authorization to the directory.

Action: The directory specification comes from $gtm_linktmpdir if it is defined, otherwise from
$gtm_tmp if that is defined; otherwise it defaults to the system temporary directory, typically /var/tmp
on Solaris and /tmp in other environments. Either correct the environment variable definition or ensure
directory dddd is appropriately set up. Note that all users of auto-relink for a directory normally need to
use the same temporary directory for their relink control files.

INVTMPDIR

INVTMPDIR, Value for $gtm_tmpdir is either not found or not a directory: dddd - Reverting to
default value

Error: Indicates the process cannot access directory dddd, which it may need for a number of actions;
the directory may not exist as a directory or the process lacks authorization to locate the directory.

Error and Other Messages INVZBREAK

FIS
Page 42, February 06, 2019 FIS

Action: The directory specification comes from $gtm_tmp if it is defined, otherwise it defaults to the
system temporary directory, typically /var/tmp on Solaris and /tmp in other environments. Either
correct the environment variable definition or ensure directory dddd is appropriately set up. Note that
all users of a particular GT.M instance normally need to use the same temporary directory to ensure
proper interprocess communication.

INVZBREAK

INVZBREAK, Cannot set ZBREAK in direct mode routine (GTM$DMOD)

Run Time Error: GTM$DMOD is an embedded routine that provides direct mode and it does not permit
insertion of a ZBREAK.

Action: Issue ZBREAK only for application code

JOBLVNDETAIL

JOBLVNDETAIL, The zwrite representation of a local variable transferred to a JOB'd process is too
long. The zwrite representation cannot exceed XXXX. Encountered size: YYYY

Run Time Error: The length of the zwrite representation of a local, (including the quotes, the '=',
concatenate operator "_", and "$[Z]C()") has the length of YYYY which exceeds the maximum limit of
XXXX.

Action: Please check the sizes of locals that needs to be sent and make sure their lengths are less than
XXXX. For those big locals, consider using another mechanism such as sockets.

LASTWRITERBYPAS

LASTWRITERBYPAS, The last writer for database file xxxx bypassed the rundown

All GT.M Components Warning: This indicates that the last process which had the xxxx database file
open for writing bypassed the rundown while disconnecting.

Action: This may occur due to an instance freeze. If so, first ensure that the Instance Freeze is resolved,
manually clearing the Instance Freeze if necessary. If there is a source server still running, a normal
shutdown of the source server will perform the rundown. Otherwise, the DSE ALL -B[UFFER_FLUSH]
command may be used to ensure that any changes remaining in shared memory are written to disk.

NODFRALLOCSUPP

NODFRALLOCSUPP, The NODEFER_ALLOCATE qualifier is not allowed on this operating system.
Not changing the defer allocation flag

MUPIP Error: Indicates the disk space preallocation is not supported on the current operating system.

Action: Consider using an external utility, such as FALLOCATE, to fulfill the need. Currently, Linux
and AIX are the supported operating systems for the NODEFER_ALLOCATE feature.

NOPRINCIO Error and Other Messages

GTM V6.2-002
FIS

February 06, 2019, Page 43

NOPRINCIO

NOPRINCIO, NOPRINCIO Unable to write to principal device

Run Time Fatal: This indicates that GT.M attempted to but could not read from or write to the principal
device.

Action: The NOPRINCIO error message works differently from other messages. The first occurrence
results in an error that can be caught by device and trap handlers. The second occurrence is FATAL
which does not drive device or trap handlers and terminates the process. The most common causes
for the principal device to cease to exist involve terminal sessions or socket connections (including
those from processes started by inetd/xinetd). When the remote client terminates the connection, the
underlying principal device is closed and becomes inaccessible when the process attempts to READ
from, or WRITE to, it. In the case of terminals, a typical cause is users closing the window of a terminal
session without cleanly exiting from the GT.M process.

PREALLOCATEFAIL

PREALLOCATEFAIL, Disk space reservation for SSSS segment has failed

MUPIP/Run Time Error: Indicates the disk space preallocation has failed due to a system call error.

Action: Please read the accompanying system message to find out why the system call error occurred
and resolve that problem.

RECLOAD

RECLOAD, Error loading record number: nnnn

MUPIP Error: This message identifies a record that MUPIP could not LOAD and follows a message
about the cause. If this message is Fatal, which it can be for BIN format, it produces a core file for
diagnostic analysis.

Action: Address the cause or, for GO and ZWR format input files, examine the record with a text editor
for possible correction or alternate action and for BIN format if fixing the cause does not resolve the
error switch to ZWR format EXTRACT.

REPLLOGOPN

REPLLOGOPN, Replication subsystem could not open log file xxxx : yyyy. Logging done to zzzz

MUPIP Error: This indicates that MUPIP could not find the log file or did not have access permission
to open the log file. If there is another log file available (a previously opened file), MUPIP writes to the
other log file. If there is no other log file available, MUPIP sends any remaining messages to /dev/null
and terminates the replication server process.

Action: Check the log file permissions, and if permissions are correct, move the log file and specify that
MUPIP should log to a log file which has appropriate access permissions.

Error and Other Messages REPLSRCEXITERR

FIS
Page 44, February 06, 2019 FIS

REPLSRCEXITERR

REPLSRCEXITERR, Source server for secondary instance xxxx exited abnormally. See log file yyyy
for details.

Operator log Warning: This indicates the the source server for instance xxxx exited abnormally.

Action: Check the end of the log file at yyyy for additional message(s).

RESRCINTRLCKBYPAS

RESRCINTRLCKBYPAS, xxxx with PID qqqq bypassing the ssss semaphore for region rrrr (ffff)
currently held by PID pppp.

Run Time Information: LKE or DSE automatically bypassed FTOK or access control semaphore.
xxxx identifies the process type: "LKE", "DSE" or "GT.M"; qqqq is the bypassing process's PID; ssss
identifies the semaphore type: "FTOK" or "access control"; rrrr is the region bypassed; ffff is the
file corresponding to region rrrr; pppp is the PID of the process holding the semaphore. In normal
operation these messages indicate incidental conflicts with no impact. If they occur when shutting the
system downthey indicate the last process may have bypassed rundown actions that normally flush all
information from memory to durable storage and release shared resources like semaphores and shared
memory.

Action: These messages when shutting down GT.M activity may indicate a need to complete the
process by invoking MUPIP RUNDOWN to get the database to a safe state; doing so as part of every
shutdown is good practice.

TPRESTART

TPRESTART, Database mmmm; code: xxxx; blk: yyyy in glbl: zzzz; pvtmods: aaaa, blkmods: bbbb,
blklvl: cccc, type: dddd, readset: eeee, writeset: ffff, local_tn: gggg, zpos: hhhh

Run Time Information: The UNIX environment variables or OpenVMS logical names
GTM_TPRESTART_LOG_FIRST and GTM_TPRESTART_LOG_DELTA control the logging of
TPRESTART messages. GTM_TPRESTART_LOG_FIRST indicates the number of TP restarts to log
from GT.M invocation. Once that many have been logged, every GTM_TPRESTART_LOG_DELTA TP
restarts, GT.M logs a restart message. If GTM_TPRESTART_LOG_DELTA is undefined, GT.M performs
no operator logging. The default value for GTM_TPRESTART_LOG_FIRST is 0 (zero), which leaves the
control completely with GTM_TPRESTART_LOG_DELTA. The facility that produces this message can
serve as a diagnostic tool in developmental environments for investigating contention due to global
updates. A zzzz of "*BITMAP" indicates contention in block allocation which might involve multiple
globals. hhhh is the $ZPOSITION of the line of M code that caused the restart of the transaction;
utilities leave this field blank.

Action: Disable, or adjust the frequency of, these messages with the mechanism described above. To
reduce the number of restarts, consider changes to the global structure, varying the time when work is
scheduled. Consider whether the business and program logic permits the use of NOISOLATION.

TRIGINVCHSET Error and Other Messages

GTM V6.2-002
FIS

February 06, 2019, Page 45

TRIGINVCHSET

TRIGINVCHSET, Trigger tttt for global gggg was created with CHSET=cccc which is different from
the current $ZCHSET of this process

Trigger/Run Time Error: TRIGINVCHSET occurs when a process invokes a trigger on a global using a
$ZCHSET that is different from the $ZCHSET used at the time of loading the first trigger on that global.
GT.M implicitly uses the $ZCHSET of the first trigger on a global to invoke all triggers on that global.
Note that tttt is the name of the first trigger on the global gggg-not necessarily the name of the trigger
being invoked. cccc is the $ZCHSET of the process at the time of loading tttt on global gggg.

Action: Ensure that the process invoking a trigger on a global uses the same $ZCHSET that was used
to load the first trigger on that global. If your application requires triggers in both M and UTF-8 modes,
use different globals to load M mode and UTF-8 mode triggers.

TRIGUPBADLABEL

TRIGUPBADLABEL, Trigger upgrade cannot upgrade label NNNN to CCCC on ^GGGG in region
RRRR

MUPIP Error: MUPIP TRIGGER UPGRADE cannot upgrade trigger version number NNNN to the
current version number CCCC for the global GGGG in region RRRR.

Action: Reload the triggers in region RRRR.

WEIRDSYSTIME

WEIRDSYSTIME, Time reported by the system clock is outside the acceptable range. Please check
and correct the system clock.

Run Time Error: Time reported by the system clock is outside the acceptable range. Please check and
correct the system clock

Action: GT.M requires the system time be set between January 1, 1970 00:00:00 UTC (the UNIX epoch)
and September 27, 33658 01:46:40 UTC

GTM V6.2-002
Page 46, February 06, 2019 FIS

	
	Table of Contents
	V6.2-002A
	Overview
	Conventions
	Platforms
	Platform support lifecycle

	Migrating to 64-bit platforms
	Call-ins and External Calls
	Internationalization (Collation)
	Environment Translation

	Recompile
	Rebuild Shared Libraries or Images
	Additional Installation Instructions
	
	Recompiling the Reference Implementation Plugin
	Additional Information for JFS1 on AIX

	Upgrading to GT.M V6.2-002A
	Stage 1: Global Directory Upgrade
	Stage 2: Database Files Upgrade
	Database Compatibility Notes

	Stage 3: Replication Instance File Upgrade
	Stage 4: Journal Files Upgrade
	Stage 5: Trigger Definitions Upgrade
	Downgrading to V5 or V4

	Managing M mode and UTF-8 mode
	Compiling ICU

	Setting the environment variable TERM
	Installing Compression Libraries

	Change History
	V6.2-002A
	V6.2-002

	M-Database Access
	M-Other Than Database Access
	Utilities-MUPIP
	Utilities-Other Than MUPIP
	Error and Other Messages
	ARCTLMAXHIGH
	ARCTLMAXLOW
	INVLINKTMPDIR
	INVTMPDIR
	INVZBREAK
	JOBLVNDETAIL
	LASTWRITERBYPAS
	NODFRALLOCSUPP
	NOPRINCIO
	PREALLOCATEFAIL
	RECLOAD
	REPLLOGOPN
	REPLSRCEXITERR
	RESRCINTRLCKBYPAS
	TPRESTART
	TRIGINVCHSET
	TRIGUPBADLABEL
	WEIRDSYSTIME

