

Contact Information

GT.M Group
Fidelity Information Services, Inc.
2 West Liberty Boulevard, Suite 300
Malvern, PA 19355
United States of America

GT.M Support for customers: +1 (610) 578-4226
gtmsupport@fisglobal.com
Switchboard: +1 (610) 296-8877
Website: http://fis-gtm.com

Legal Notice

Copyright © 2012 Fidelity Information Services, Inc. All Rights Reserved

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts.

GT.M™ is a trademark of Fidelity Information Services, Inc. Other trademarks are the property of their respective owners.

This document contains a description of GT.M and the operating instructions pertaining to the various functions that comprise the system. This document does
not contain any commitment of FIS. FIS believes the information in this publication is accurate as of its publication date; such information is subject to change
without notice. FIS is not responsible for any errors or defects.

Revision History

Revision 1.1 20 March 2012 Improvements and corrections in “Upgrade
Replication Instance File” (page 11) and “New
Qualifiers” (page 14) sections.

Revision 1.0 February 22, 2012 First published version.

http://fis-gtm.com
http://www.gnu.org/licenses/fdl.txt

iii

Table of Contents
Summary ... 1
Motivation for Supplementary Instance Replication .. 2
Theory of Operation ... 3

Types of Sequence Numbers ... 3
Database Transaction Number .. 3
Journal Sequence Number ... 4
Stream Sequence Number ... 4

Examples ... 5
Simple Example ... 5
Ensuring Consistency with Rollback .. 6
Rollback Not Desired or Required by Application Design .. 6
Two Originating Primary Failures ... 7
Replication and Online Rollback ... 8

Limitations ... 10
Procedures .. 11

Overview ... 11
Upgrade Replication Instance File .. 11
Creating a Supplementary Instance .. 12
Starting / Resuming Replication ... 13
Changing the Replication Source ... 13

MUPIP Commands ... 14
Modified qualifiers .. 14
New Qualifiers ... 14

Error Messages and Recovery .. 16

1

Summary

Effective V5.5-000, FIS GT.M adds a new type of replication, called Supplementary Instance (SI) replication. The previous sole
replication mechanism is now called Business Continuity (BC) replication in order to distinguish between them.

At the time of writing, V5.5-000 is the only GT.M release to support SI replication. Should later releases exist when you peruse this
technical bulletin, please read "V5.5-000 or later, as clarified or qualified by the release notes for your release" for "V5.5-000" below.

In this document, unless more specifically designated, the term "transaction" refers to all TP transactions - updates within TSTART/
TCOMMIT brackets (with nested transactions, the outermost one), and all so-called "mini transactions" - individual updates (Sets,
Kills, and ZKills) not within TSTART/TCOMMIT brackets.

2

Motivation for Supplementary Instance Replication

GT.M replication was originally intended to provide business continuity for systems of record. For example with instances named
Ardmore and BrynMawr, business logic processed on instance Ardmore can be streamed to instance BrynMawr so that should
Ardmore ever go down, BrynMawr can immediately take over and provide continuity. In order to ensure that BrynMawr produces
results consistent with Ardmore, BrynMawr can contain only material state information that is also in Ardmore.1 To help ensure
this consistency, GT.M BC replication prohibits locally generated database updates on a replicating secondary instance. Because
they are conceptually part of atomic updates from the originating primary instance, GT.M triggers on replicating secondary
instances are computed and committed locally.

Now consider an application such as running a report. This may require database updates including calculating and storing
aggregates, statistics and interim results, or perhaps just to record the fact that the report was run. With traditional BC Replication,
to offload such reporting from the originating primary instance is not a simple matter of running it on a replicating secondary
instance, since updates are not permitted on replicating secondary instances.

SI replication allows replication from an instance (either Ardmore or BrynMawr in the example above) to another originating
primary instance, Malvern. Malvern can execute its own business logic, computing and committing its own updates to its database,
while receiving a replication stream. In turn, BC Replication from Malvern can provide it with its own replicating secondary
instance, Newtown. In this example, only originating primary instances Ardmore and Malvern can execute business logic and
compute database updates. Replicating secondary instances BrynMawr and Newtown are only permitted to receive and apply
replication streams from their originating primary instances.

SI replication is intended to be a general purpose mechanism whose utility includes applications such as real-time decision support,
warehousing, analytics and auditing.

1Non-material information in the database may be information that identifies the instance, local process ids, system load, etc.

3

Theory of Operation

This section presupposes an understanding of GT.M database replication and Logical Multi-Site (LMS) application configurations.

In order to create applications that remain available in the face of system and network failure, GT.M replication is asynchronous,
which in turn means that the source and receiver ends of a replication connection are at an identical state only when there is
no activity underway. To maintain consistency, and to restore it when restarting a replication connection, instances maintain a
common, mutually coherent, instance-wide serial number called a journal sequence number. Since replication deals with an entire
global variable name space, regardless of the mapping of global variables to database files, all updates participate in this numbering,
even when modifying different database files.

When an originating primary instance and a replicating secondary instance connect, they establish the latest shared transaction
(that is, the latest transaction they both have in common in their databases). If the instance configured as the secondary has any
transactions in its database subsequent to that last transaction shared with the instance that is to be the primary, it rolls its database
back to that last common transaction before beginning replication. The transactions that are rolled back go into an Unreplicated
Transaction Log (previously known as a Lost Transaction File, a name we are retaining so as to not cause regressions). Identifying
the common point for this rollback requires mutually coherent transaction ordering. Journal sequence numbers, while providing
coherent transaction for BC replication do not suffice for SI replication.

To augment this capability for SI replication, journal sequence numbers are tagged with their origin- a stream # that can take on
values 0 through 15 - and a stream sequence number - the journal sequence number of the update on the originating instance. Thus,
of the journal sequence numbers in Malvern say 100, 101, and 102, if the first and third transactions are locally generated and the
second is replicated, the tagged journal sequence numbers might be something like {100,0,10}, {101,1,18}, {102,0,11}. The 0 stream
for 100 and 102 indicates those transactions are generated locally on Malvern whereas stream # 1 indicates those transactions
were generated in Ardmore. It is important to note that if, as part of restarting replication with Ardmore, Malvern needs to roll
{101,1,18} off its database, database update serialization also requires it to roll {102,0,11} off as well, and both will appear in the
Unreplicated Transactlon Log.

The same transaction that has a Malvern sequence number of 101 will have a different sequence number of 18 on Ardmore and
BrynMawr. That is, the journal sequence number on Ardmore becomes the stream sequence number on Malvern. The replication
instance file in Malvern contains information that allows GT.M to determine this mapping, so that when Malvern rolls {101,1,18} off
its database, Ardmore knows that Malvern has rolled off Ardmore’s transaction 18.

If Malvern in turn implements BC replication to another instance Newtown, the tagging is propagated to Newtown, such that if
Ardmore and Malvern both go down (e.g., if they are co-located in a data center that loses electricity), BrynMawr and Newtown
can take over the functions of Ardmore and Malvern respectively, and Newtown can perform any synchronization needed in
order to start accepting a replication stream from BrynMawr. as being a continuation of the updates generated by Ardmore, and
BrynMawr in turn accepts Newtown as the successor to Malvern.

Types of Sequence Numbers

SI replication adds additional types of update related sequence numbers to those already in GT.M. This is an attempt to summarize
in one place what they are and how they are related.

Database Transaction Number

Every transaction applied to a database file increments the database transaction number for that file. Each block records the
database transaction number at which it was updated, and the Current transaction field in the file header shows the value for the

Theory of Operation

4

next transaction or mini-transaction to use. The following database file header fields all show database transaction numbers: Last
Record Backup, Last Database Backup, Last Bytestream Backup, Maximum TN, and Maximum TN Warn.

Database transaction numbers are currently unsigned 64-bit integers.

While database activity uses database transaction numbers sequentially, not every transaction number can be found in a database
block. For a Kill increments the database transaction number, but can remove blocks with earlier database transaction numbers
from the database.

Note that database transaction numbers are updated in memory and only periodically flushed to secondary storage, so in cases of
abnormal shutdown, the on-disk copies in the file header might be somewhat out-of-date.

Journal Sequence Number

While the database transaction number is specific to a database file, replication imposes a serialization of transactions across all
replicated regions. As each transaction is placed in the Journal Pool it is assigned the next journal sequence number. When a
database file in a replicated instance is updated, the Region Seqno field in the file header records the journal sequence number for
that transaction. The journal sequence number for an instance is the maximum Region Seqno of any database file in that instance.
While it uses them in processing, GT.M stores journal sequence numbers only in journal files. In database file headers, Zqgblmod
Seqno and Zqgblmod Trans are journal sequence numbers.

Except for transactions in Unreplicated Transaction Logs, the journal sequence number of a transaction uniquely identifies that
transaction on the originating primary instance and on all replicating secondary instances. When replicated via SI replication,
the journal sequence number becomes a stream sequence number (see below) and propagated downstream, thus maintaining the
unique identity of each transaction.

Journal sequence numbers cannot have holes - missing journal sequence numbers are evidence of abnormal database activity,
including possible manual manipulation of the transaction history or database state.

Journal sequence numbers are 60-bit unsigned integers.

Stream Sequence Number

The receiver of a SI replication stream has both transactions that it receives via replication as well as transactions that it computes
locally from business logic. As discussed earlier, while journal sequence numbers can uniquely identify a series of database updates,
they cannot identify the source of those updates. Thus, V5.5-000 introduces the concept of a stream sequence number.

On an originating primary instance that is not the recipient of an SI replication stream, the journal sequence number and the stream
sequence number are the same.

On a primary instance that is the recipient of an SI replication stream, the journal sequence number continues to uniquely identify
and serialize all updates, whether received from replication or locally generated. However, there is also a stream sequence number,
which is the journal sequence number for locally generated transactions, and for replicated updates, the combination of a non-
zero 4 bit tag (i.e., with values 1 through 15) and the journal sequence number for the transaction on the system from which it was
replicated. These stream sequence numbers are propagated to downstream replicating secondary instances.

Stream sequence numbers are 64-bit unsigned integers.

5

Examples

To make the following scenarios easier to understand, each update is prefixed with the system where it was originally generated
and the sequence number on that system and any BC replicating secondary instances.

Simple Example

The three systems initially operate in roles O (Originating primary instance), R (BC Replicating secondary instance) and S (recipient
of an SI replication stream).

Ardmore BrynMawr Malvern Comments

O: ... A95, A96, A97,
A98, A99

R: ... A95, A96, A97,
A98

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38

Ardmore as an originating primary instance at transaction number
A99, replicates to BrynMawr as a BC replicating secondary instance at
transaction number A98 and Malvern as a SI that includes transaction
number A97, interspersed with locally generated updates. Updates
are recorded in each instance's journal files using before-image
journaling.

Crashes O: ... A95, A96, A97,
A98, B61

... M34, A95, M35,
M36, A96, A97, M37,
M38

When an event disables Ardmore, BrynMawr becomes the new
originating primary, with A98 as the latest transaction in its
database, and starts processing application logic to maintain business
continuity. In this case where Malvern is not ahead of BrynMawr, the
Receiver Server at Malvern can remain up after Ardmore crashes.
When BrynMawr connects, its Source Server and Malvern’s Receiver
Server confirms that BrynMawr is not behind Malvern with respect to
updates received from Ardmore, and SI replication from BrynMawr
picks up where replication from Ardmore left off.

- O: ... A95, A96, A97,
A98, B61, B62

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, B61,
M40

Malvern operating as a supplementary instance to BrynMawr
replicates transactions processed on BrynMawr, and also applies
its own locally generated updates. Although A98 was originally
generated on Ardmore, Malvern received it from BrynMawr because
A97 was the common point between BrynMawr and Malvern.

... A95, A96, A97,
A98, A99

O: ... A95, A96, A97,
A98, B61, B62, B63,
B64

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, B61,
M40, B62, B63

Malvern, continuing as a supplementary instance to BrynMawr,
replicates transactions processed on BrynMawr, and also applies
its own locally generated updates. Ardmore meanwhile has been
repaired and brought online. It has to roll transaction A99 off its
database into an Unreplicated Transaction Log before it can start
operating as a replicating secondary instance to BrynMawr.

R: ... A95, A96, A97,
A98, B61, B62, B63,
B64

O: ... A95, A96, A97,
A98, B61, B62, B63,
B64, B65

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, B61,
M40, B62, B63, M41,
B64

Having rolled off transactions into an Unreplicated Transaction
Log, Ardmore can now operate as a replicating secondary instance
to BrynMawr. This is normal BC Logical Multi-Site operation.
BrynMawr and Malvern continue operating as originating primary
instance and supplementary instance.

Examples

6

Ensuring Consistency with Rollback

Whereas in the last example Malvern was not ahead when starting SI replication from BrynMawr, in this example, asynchronous
processing has left it ahead and must rollback its database state before it can receive the replication stream.

Ardmore BrynMawr Malvern Comments

O: ... A95, A96, A97,
A98, A99

R: ... A95, A96, A97 S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40

Ardmore as an originating primary instance at transaction number
A99, replicates to BrynMawr as a BC replicating secondary instance at
transaction number A97 and Malvern as a SI that includes transaction
number A98, interspersed with locally generated updates. Updates
are recorded in each instance's journal files using before-image
journaling.

Crashes O: ... A95, A96, A97 ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40

When an event disables Ardmore, BrynMawr becomes the new
originating primary, with A97 the latest transaction in its database.
Malvern cannot immediately start replicating from BrynMawr
because the database states would not be consistent - while BrynMawr
does not have A98 in its database and its next update may implicitly
or explicitly depend on that absence, Malvern does, and may have
relied on A98 to compute M39 and M40.

- O: ... A95, A96, A97,
B61, B62

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, B61

For Malvern to accept replication from BrynMawr, it must roll
off transactions generated by Ardmore, (in this case A98) that
BrynMawr does not have in its database, as well as any additional
transactions generated and applied locally since transaction number
A98 from Ardmore.a This rollback is accomplished with a mupip
journal -rollback -fetchresync operation on Malvern.b These rolled off
transactions (A98, M39, M40) go into the Unreplicated Transaction
Log and can be subsequently reprocessed by application code.c Once
the rollback is completed, Malvern can start accepting replication
from BrynMawr.d BrynMawr in its Originating Primary role
processes transactions and provides business continuity, resulting in
transactions B61 and B62.

- O: ... A95, A96, A97,
B61, B62, B63, B64

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, B61, B62, M39a,
M40a, B63

Malvern operating as a supplementary instance to BrynMawr
replicates transactions processed on BrynMawr, and also applies its
own locally generated updates. Note that M39a & M40a may or may
not be the same updates as the M39 & M40 previously rolled off the
database.

aAs this rollback is more complex, may involve more data than the regular LMS rollback, and may involve reading journal records sequentially; it may take longer.
bIn scripting for automating operations, there is no need to explicitly test whether BrynMawr is behind Malvern - if it is behind, the Source Server will fail to
connect and report an error, which automated shell scripting can detect and effect a rollback on Malvern followed by a reconnection attempt by BrynMawr. On
the other hand, there is no harm in Malvern routinely performing a rollback before having BrynMawr connect - if it is not ahead, the rollback will be a no-op. This
characteristic of replication is unchanged from releases prior to V5.5-000.
cGT.M's responsibility for them ends once it places them in the Unreplicated Transaction Log.
dUltimately, business logic must determine whether the rolled off transactions can simply be reapplied or whether other reprocessing is required. GT.M's
$ZQGBLMOD() function can assist application code in determining whether conflicting updates may have occurred.

Rollback Not Desired or Required by Application Design

In the example above, for Malvern to start accepting SI replication from BrynMawr with consistency requires it to rollback its
database because it is ahead of BrynMawr. There may be applications where the design of the application is such that this rollback

Examples

7

neither required nor desired. GT.M provides a way for SI replication to start in this situation without rolling transactions off into an
Unreplicated Transaction File.

Ardmore BrynMawr Malvern Comments

O: ... A95, A96, A97,
A98, A99

R: ... A95, A96, A97 S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40

Ardmore as an originating primary instance at transaction number
A99, replicates to BrynMawr as a BC replicating secondary instance at
transaction number A97 and Malvern as a SI that includes transaction
number A98, interspersed with locally generated updates. Updates
are recorded in each instance's journal files using before-image
journaling.

Crashes O: ... A95, A96, A97,
B61, B62

... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40

When an event disables Ardmore, BrynMawr becomes the new
originating primary, with A97 the latest transaction in its database
and starts processing application logic. Unlike the previous example,
in this case, application design permits (or requires) Malvern to start
replicating from BrynMawr even though BrynMawr does not have
A98 in its database and Malvern may have relied on A98 to compute
M39 and M40.

- O: ... A95, A96, A97,
B61, B62

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40,
B61, B62

With its Receiver Server started with the -noresync option, Malvern
can receive a SI replication stream from BrynMawr, and replication
starts from the last common transaction shared by BrynMawr and
Malvern. Notice that on BrynMawr no A98 precedes B61, whereas it
does on Malvern, i.e., Malvern was ahead of BrynMawr with respect
to the updates generated by Ardmore.

Two Originating Primary Failures

Now consider a situation where Ardmore and Malvern are located in one data center, with BC replication to BrynMawr and
Newtown respectively, located in another data center. When the first data center fails, the SI replication from Ardmore to Malvern
is replaced by SI replication from BrynMawr to Newtown.

Ardmore BrynMawr Malvern Newtown Comments

O: ... A95, A96, A97,
A98, A99

R: ... A95, A96, A97,
A98

S: ... M34, A95, M35,
M36, A96, M37, A97,
M38

R: ... M34, A95, M35,
M36, A96, M37

Ardmore as an originating primary instance
at transaction number A99, replicates to
BrynMawr as a BC replicating secondary
instance at transaction number A98 and
Malvern as a SI that includes transaction
number A97, interspersed with locally
generated updates. Malvern in turn replicates
to Newtown.

Goes down with the
data center

O: ... A95, A96, A97,
A98, B61, B62

Goes down with the
data center

... M34, A95, M35,
M36, A96, M37

When a data center outage disables Ardmore,
and Malvern, BrynMawr becomes the
new originating primary, with A98 as the
latest transaction in its database and starts
processing application logic to maintain
business continuity. Newtown can receive
the SI replication stream from BrynMawr,
without requiring a rollback since the receiver
is not ahead of the source.

Examples

8

Ardmore BrynMawr Malvern Newtown Comments

- O: ... A95, A96, A97,
A98, B61, B62

- S: ... M34, A95, M35,
M36, A96, M37, A97,
A98, N73, B61, N74,
B62

Newtown receives SI replication from
BrynMawr and also applies its own locally
generated updates. Although A97 and A98
were originally generated on Ardmore,
Newtown receives them from BrynMawr.
Newtown also computes and applies locally
generated updates

... A95, A96, A97,
A98, A99

O: ... A95, A96, A97,
B61, B62, B63, B64

... M34, A95, M35,
M36, A96, M37, A97,
M38

S: ... M34, A95, M35,
M36, A96, M37, A97,
A98, N73, B61, N74,
B62, N75, B63, N76,
B64

While BrynMawr and Newtown, keep the
enterprise in operation, the first data center
is recovered. Since Ardmore has transactions
in its database that were not replicated to
BrynMawr when the latter started operating
as the originating primary instance, and
since Malvern had transactions that were
not replicated to Newtown when the latter
took over, Ardmore and Malvern must
now rollback their databases and create
Unreplicated Transaction Files before
receiving BC replication streams from
BrynMawr and Newtown respectively.
Ardmore rolls off A98 and A99, Malvern
rolls off A97 and M38.

R: ... A95, A96, A97,
B61, B62, B63, B64

O: ... A95, A96, A97,
B61, B62, B63, B64,
B65

R: ... M34, A95, M35,
M36, A96, M37, A97,
A98, N73, B61, N74,
B62, N75, B63, N76,
B64

S: ... M34, A95, M35,
M36, A96, M37, A97,
A98, N73, B61, N74,
B62, N75, B63, N76,
B64, N77

Having rolled off transactions into an
Unreplicated Transaction Log, Ardmore
can now operate as a replicating secondary
instance to BrynMawr. This is normal BC
Logical Multi-Site operation. BrynMawr and
Malvern continue operating as originating
primary instance and supplementary instance.
Note that having rolled A97 off its database,
Malvern receives that transaction from
Newtown as it catches up.

Replication and Online Rollback

GT.M V5.5-000 also introduces a mupip journal -rollback -backward -online feature that allows a database to be rolled back in
state space while an application is in operation. This functionality is discussed in the release notes. Consider the following example
where Ardmore rolls back its database.

Ardmore BrynMawr Malvern Comments

O: ... A95, A96, A97,
A98, A99

R: ... A95, A96, A97 S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40

Ardmore as an originating primary instance at transaction number
A99, replicates to BrynMawr as a BC replicating secondary instance at
transaction number A97 and Malvern as a SI that includes transaction
number A98, interspersed with locally generated updates. Updates
are recorded in each instance’s journal files using before-image
journaling.

Rolls back to
A96 with A97

Rolls back
automatically to A96

- Instances receiving a replication stream from Ardmore can be
configured to rollback automatically when Ardmore performs an

Examples

9

Ardmore BrynMawr Malvern Comments

through A99 in
the Unreplicated
Transaction Log

(assume Receiver
Server started with -
autorollback - refer to
the V5.5-000 Release
Notes for details.

online rollback by starting the Receiver Server with -autorollback.
If Malvern’s Receiver Server is so configured, it will roll A97
through M40 into an Unreplicated Transaction Log. This scenario is
straightforward. But with the -noresync qualifier, the Receiver Server
can be started configured to simply resume replication without rolling
back, and that scenario is developed here.

O: ... A95, A96, A97a,
A98a, A99a

R: ... A95, A96, A97a,
A98a

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40,
A97a, M41, A98a,
M42

Transactions A97a through A99a are different transactions from
A97 through A99 (which are in an Unreplicated Transaction File
on Ardmore and must be reprocessed). Note that Malvern has
both the original A97 and A98 as well as A97a and A98a. A99 was
never replicated to Malvern - Ardmore rolled back before it was
replicated, and A99a has not yet made it to Malvern (it will soon,
unless Ardmore rolls back again)

10

Limitations

SI replication is only supported on POSIX editions of GT.M - in other words, it is not supported by GT.M on OpenVMS.
Furthermore, with this release, GT.M no longer supports replication between OpenVMS and POSIX platforms, or on POSIX
platforms with GT.M releases prior to V5.1-000. To upgrade to GT.M V5.5-000, or to upgrade from GT.M on OpenVMS to GT.M
V5.5-000 on a POSIX platform, first upgrade to GT.M V5.1-000 or later on a POSIX platform as an intermediate step.

Although a receiver of SI replication can source a BC replication stream for downstream propagation, it cannot source an SI
replication stream. So, in the example above, while Malvern can receive SI replication from Ardmore or BrynMawr, and it can
source a BC replication stream to Newtown, which can in turn source a BC replication stream to Oxford. Thus, none of Malvern,
Newtown or Oxford can source an SI replication stream.

Also an instance can only receive a single SI replication stream. Malvern cannot receive SI replication from an instance other
than Ardmore (or an instance receiving BC replication from Ardmore, such as BrynMawr). Newtown or Oxford are replicating
secondary instances and can receive no updates other than from Malvern.

The total number of replication streams that an instance can source is sixteen, with any combination of BC and SI replication.

11

Procedures

Overview

Although V5.5-000 supports only one source stream for SI replication, the architecture allows for fifteen externally sourced streams
(numbers 1 through 15), with stream 0 being locally generated updates. Under normal conditions, on a supplementary instance, one
will see updates from streams 0 and 1. If the recipient of an SI stream has been moved from receiving replication from one source to
another, you may see other stream numbers (corresponding to updates from other streams) as well.

When adding SI replication, the rules to remember are that (a) both source and receiver sides of SI replication must be V5.5-000,
(b) upgrading an instance to V5.5-000 requires a new replication instance file because the replication instance file format for SI is
not compatible with those of prior releases and (c) the -updateresync qualifier requires the name of a prior replication instance file
when both source and receiver are V5.5-000.

Remember that except where an instance is an unreplicated sole instance, you should upgrade replicating secondary instances
rather than originating primary instances. Starting with BC replication (e.g., Ardmore as originating primary and BrynMawr as
replicating secondary), the simplest steps to start SI replication to Malvern are:

• Bring BrynMawr down and upgrade it to V5.5-000. BrynMawr requires a new replication instance file. Please refer to the relevant
release notes for details of upgrading database files and global directories; unless otherwise instructed by FIS, always assume that
object and journal files are specific to each GT.M release.

• Resume BC replication from Ardmore to BrynMawr. Since Ardmore is at an older GT.M release than V5.5-000, when starting
the Receiver Server for the first time at BrynMawr, the -updateresync qualifier does not require the name of a prior replication
instance file.

• Create supplementary instance Malvern from a backup of BrynMawr or Ardmore, if that is more convenient. Malvern will
require a new replication instance file, created with the -supplementary qualifier.

• Start SI replication from BrynMawr to Malvern. Since Malvern and BrynMawr are both V5.5-000, the -updateresync qualifier
used when the Malvern Receiver Server starts for the first time requires the old replication instance file copied, perhaps as part of
a BACKUP, up from BrynMawr as its value.

At your convenience, once BrynMawr is upgraded you can:

• Switchover so that BrynMawr is the originating primary instance with BC replication to Ardmore and SI replication to Malvern.
This is unchanged from current LMS procedures. SI replication from BrynMawr to Malvern can operate through the switchover.

• Bring Ardmore down and upgrade it to V5.5-000. It requires a new replication instance file.

• Start BC replication from BrynMawr to Ardmore. Since Ardmore and BrynMawr are both V5.5-000, the -updateresync qualifier
for Ardmore’s first Receiver Server start requires the name of a prior replication instance file. As it cannot use Ardmore’s pre-
V5.5-000 format replication instance file, in this special case, use a backup copy from BrynMawr as that prior file.

Upgrade Replication Instance File

To upgrade the replication instance file, perform the following steps:

• Shut down all mumps, MUPIP and DSE processes except Source and Receiver Server processes; then shut down the Receiver
Server (and with it, the Update Process) and all Source Server processes. Use MUPIP RUNDOWN to confirm that all database
files of the instance are closed and there are no processes accessing them.

Procedures

12

• Rename the existing replication instance file after making a backup copy.

• Create a new replication instance file (you need to provide the instance name and instance file name, either with command line
options or in environment variables, as documented in the Administration and Operations Guide):

• If this is instance is to receive SI replication (Malvern in the examples above) or to receive BC replication from an instance that
receives SI replication (Newtown in the examples above), use the command:

 mupip replicate -instance_create -supplementary

• Otherwise use the command:

mupip replicate -instance_create

• Prepare it to accept a replication stream:

• Start a passive Source Server using the -updok flag.

• Start the Receiver Server using the updateresync flag, e.g.: mupip replicate -receiver -start -updateresync=filename flag where
filename is the prior replication file if the source is V5.5-000 and no filename if it is an older GT.M release (with other required
command line flags, as documented in the Administration and Operations Guide).

• Start a Source Server on a root or propagating primary instance to replicate to this instance. Verify that updates on the source
instance are successfully replicated to the receiver instance.

The -updateresync qualifier indicates that instead of negotiating a mutually agreed common starting point for synchronization the
operator is guaranteeing the receiving instance has a valid state that matches the source instance currently or as some point in the
past. Generally this means the receiving instance has just been updated with a backup copy from the source instance.

A GT.M V5.5-000 instance can source a BC replication stream to or receive a BC replication stream from older GT.M
releases, subject to limitations as discussed in the Limitations section of this document. It is only for SI replication that both
source and recipient must both be V5.5-000.

Creating a Supplementary Instance

A supplementary instance cannot be the first or sole instance that you upgrade to V5.5-000 - you must already have created an
instance running V5.5-000 to provide a replication stream to the supplementary instance.

You can create a supplementary instance from (a) a backup copy of another instance, a supplementary instance, an originating
primary or replicating secondary by giving it a new identity, or (b) a freshly created, new instance. An instance used to create a
supplementary instance must already be upgraded to V5.5-000.

Starting with a backup of another instance, follow the procedures above under Upgrade Replication Instance File using the -
supplementary flag to the mupip replicate -instance_create command.

Creating a supplementary instance from a backup of an existing instance creates an SI replication instance with all the database
state in the existing instance and is perhaps the most common application need. But there may be situations when a supplementary
instance only needs new data, for example if it is to provide a reporting service only for new customers, and historical data for old
customers is just excess baggage. In this case, you can also create a supplementary instance by creating a new instance, pre-loading
it with any data required, enabling replication for the database files (since an Update Process will only apply updates to a replicated
- and journaled - database region), and following the procedures above under above under Upgrade Replication Instance File using
the -supplementary=on flag to the mupip replicate -instance_create command. Ship a replication instance file from the source to
provide the -updateresync=filename qualifier required when starting the Receiver Server for the first time.

Procedures

13

Starting / Resuming Replication

For starting SI replication on an originating primary supplementary instance (Malvern in the above example), the procedure is
similar to a non-supplementary instance except that one also needs to start a receiver server (after having started a source server
to set up the journal pool) to receive updates from the corresponding non-supplementary instance (Ardmore or BrynMawr in
this case). Similarly, as part of shutting down the originating primary supplementary instance, an added step is to shut down the
Receiver Server (if it is up and running) before shutting down the Source Server.

Remember that for GT.M replication, the Receiver Server listens at a TCP port and the Source Server connects to it. If the Receiver
Server is not ahead of the Source Server, replication simply starts and streams updates from the source to the receiver. When the
Receiver Server is ahead of the Source Server, the cases are different for BC and SI replication.

For either BC or SI replication, if the Receiver Server is started with the new -autorollback qualifier, it performs an online rollback
of the receiving instance, so that it is not ahead of the originating instance, creating an Unreplicated Transaction Log of any
transactions that are rolled off the database. When started without the -autorollback qualifier, a Receiver Server notified by its
Source Server of a rollback, logs the condition and exits so an operator can initiate appropriate steps.

For SI replication the new -noresync qualifier tells the Receiver Server not to rollback the database even if the receiver is ahead of
the source. In this case, the Source Server starts replication from the last journal sequence number common to the two instances.

Changing the Replication Source

When changing the source of a supplementary replication stream to another in the same family of instances (for example in the
example where Ardmore and Malvern crash and Newtown is to receive a replication stream from BrynMawr, start the Receiver
Server normally (with either -autorollback or -noresync, as appropriate) and allow BrynMawr to connect to it. Instead of using -
autorollback, you can also perform a mupip journal -rollback -backward -fetchresync before starting the Receiver Server.

To migrate a supplementary instance from receiving SI replication from one set of BC instances to a completely different set - for
example, if Malvern is to switch from receiving SI replication from the set of {Ardmore, BrynMawr} to a completely unrelated set
of instances {Pottstown, Sanatoga}

14

MUPIP Commands

SI replication adds and modifies qualifiers to the MUPIP REPLICATE and MUPIP JOURNAL commands.

Modified qualifiers

-updateresync=filename

Used when starting a Receiver Server on an instance where the replication instance file has no history records (usually because
the instance file was newly created). The -updateresync qualifier now requires the file name of a replication instance file if the
source of the replication stream is running GT.M V5.5-000 or higher, but not if the source is running a GT.M release prior to GT.M
V5.5-000. This helps the Receiver Server by using history records from the input instance file (instead of the receiver instance file
which has no history records) to exchange history information with the source and ensure both instances are in sync before safely
starting replication. Previously there was no verification of history records in case of -updateresync usage and this opened up a
safely hole in GT.M replication. For example, in the case where a receiver of an SI replication stream is started for the first time
(the receiver and source have not communicated since the receiver replication instance file was created), this qualifier requires
the name of a replication instance file (which is not the current replication instance file of the secondary instance) that is obtained
from a backup of the source instance (taken at the same time the source databases were backed up). In this case, the Receiver Server
startup should happen only after ensuring the backed up source database has been loaded onto the receiver instance. Once the
receiver (started with -updateresync) and source connect, the Update Process logs a message containing the string "New History
Content". The -updateresync should no longer be used for future Receiver Server startups. Note that the updateresync qualifier is
not upward compatible from older releases of GT.M that never required a file name. Although FIS tries hard to keep GT.M upward
compatible, our judgment is that this incompatibility represents the best option for adding the new SI replication functionality as
well as enhancing the robustness of existing BC replication. Note that this qualifier was needed only in uncommon situations in
GT.M V5.5-000 and prior releases. V5.5-000 make the need even more uncommon by eliminating it in the case where the instance
has been recreated using a backup of another instance. This is because of a change to mupip replic -editinstance command which
now supports a -name qualifier. For more details, refer to GT.M V5.5-000 Release notes.

New Qualifiers

-autorollback

Used when starting a Receiver Server. The command mupip replicate -receiver -start -autorollback allows the receiving instance
of SI or BC replication to roll back as required when the source instance rolls back with a mupip journal -rollback -backward
command. For more information on this flag, refer to GT.M V5.5-000 Release notes.

As autorollback uses mupip online rollback under the covers, it should be considered field test grade functionality as long as
that function is considered field test grade functionality.

-noresync -

Used when starting a Receiver Server. The command mupip replicate -receiver -start -noresync instructs the Receiver Server to
accept a SI replication stream even when the receiver is ahead of the source. In this case, the source and receiver servers exchange
history records from the replication instance file to determine the common journal stream sequence number and replication
resumes from that point onwards. Specifying -noresync on a BC replication stream is disallowed with a NORESYNCSUPPLONLY
error. Use of -noresync on a SI replication stream receiver server where the receiving instance was started with -UPDNOTOK
(updates are disabled) is disallowed with a NORESYNCUPDATERONLY error. Note also that the noresync qualifier is not the
opposite of the resync qualifier of rollback (mupip journal -rollback -resync), which is intended for use under the direction of FIS
GT.M support.

http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_V5.5-000_Release_Notes.html
http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_V5.5-000_Release_Notes.html

MUPIP Commands

15

-resume=<strm_num>

Used when starting a Receiver Server of an SI replication stream with -updateresync in case the receiver instance has previously
received from the same source but had only its instance file (not database files) recreated in between (thereby erasing all
information about the source instance and the stream number it corresponds to recorded in the receiver instance file). In this case,
the command mupip replic -receiv -start -updateresync=<instfile> -resume=<strm_num>, where <strm_num> is a number from 1
to 15, instructs the receiver server to use the database file headers to find out the current stream sequence number of the receiver
instance for the stream number specified as <strm_num>, but uses the input instance file (specified with -updateresync) to locate
the history record corresponding to this stream sequence number and then exchange history with the source to verify the two
instances are in sync before resuming replication. Note that in case -resume is not specified and only -updateresync is specified for
a SI replication stream, it uses the input instance file name specified with -updateresync to determine the stream sequence number
as well as provide history records to exchange with the source instance (and verify the two are in sync). Assuming that instance
files are never recreated (unless they are also accompanied by a database recreate), this qualifier should not be required in normal
usage situations.

-reuse=<instname>

Used when starting a Receiver Server of an SI replication stream with -updateresync in case the receiver instance has previously
received from fifteen (all architecturally allowed) different externally sourced streams and is now starting to receive from yet
another source stream. The command mupip replic -receiv -start -updateresync=<instfile> -reuse=<instname>, where <instname> is
the name of a replication instance, instructs the receiver server to look for an existing stream in the replication instance file header
whose “Group Instance Name” (displayed by a mupip replic -editinstance -show command on the receiver replication instance
file) matches the instance name specified and if one does, reuse that stream number for the current source connection (erasing any
record of the older Group using the same stream number).

-rsync_strm=<strm_num>

Used when starting a rollback command with the -resync qualifier. The command mupip journal -rollback -resync=
-rsync_strm=<strm_num> instructs rollback to roll back the database to a sequence number specified with the -
resync=<sequence_num> qualifier but that <sequence_num> is a journal stream sequence number (not a journal sequence number)
corresponding to the stream number <strm_num> which can be any value from 0 to 15. Note that like the -resync qualifier, the -
rsync_strm qualifier is also intended for use under the direction of your GT.M support channel.

-supplementary

Used when creating a replication instance file. The command mupip replicate -instance_create -supplementary creates a replication
instance file suitable for use in a supplementary instance. To create a replication instance file that is suitable for use in a non-
supplementary instance, use the same command but without the -supplementary qualifier.

-updnotok

Used when starting a Source Server. The command mupip replicate -source -start -updnotok instructs the Source Server to not
allow local updates on this instance. This is a synonym for the already existing -propagateprimary qualifier but is named so it better
conveys its purpose.

-updok

Used when starting a Source Server. The command mupip replicate -source -start -updok instructs the Source Server to allow local
updates on this instance. This is a synonym for the already existing -rootprimary qualifier but is named so it better conveys its
purpose.

16

Error Messages and Recovery

See the Error Messages and Recovery Guide and V5.5-000 Release Notes.

GTM_V5.5-000_Release_Notes.html

	
	Table of Contents
	Summary
	Motivation for Supplementary Instance Replication
	Theory of Operation
	Types of Sequence Numbers
	Database Transaction Number
	Journal Sequence Number
	Stream Sequence Number

	Examples
	Simple Example
	Ensuring Consistency with Rollback
	Rollback Not Desired or Required by Application Design
	Two Originating Primary Failures
	Replication and Online Rollback

	Limitations
	Procedures
	Overview
	Upgrade Replication Instance File
	Creating a Supplementary Instance
	Starting / Resuming Replication
	Changing the Replication Source

	MUPIP Commands
	Modified qualifiers
	New Qualifiers

	Error Messages and Recovery

