
GT.M
FIS InfoHub
r4.5

FIS InfoHub

FIS
Page 2, March 13, 2018

r4.5
FIS InfoHub

FIS InfoHub

Publication date 13 March 2018
Copyright © 2014, 2018 Fidelity Information Services, Inc. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts and no Back-Cover Texts.

GT.M™ is a trademark of Fidelity Information Services, Inc. Other trademarks are the property of their respective owners.

This document contains a description of GT.M and the operating instructions pertaining to the various functions that
comprise the system. This document does not contain any commitment of FIS. FIS believes the information in this publication
is accurate as of its publication date; such information is subject to change without notice. FIS is not responsible for any errors
or defects.

Revision History

Revision r4.5 13 March 2018 • In Monitoring GT.M, made InfoHub
configuration file updates.

• In InfoHub Environment Setup,
specified that IH configuration
allows for one sitewide
configuration.

• In InfoHub Concepts, specified
that gtmConfGenerator ensures
InfoDictItems are uniquely named.

• In Writing an xLine Gleaner,
specified that PipeLineRRGleaner no
longer exists.

Revision 63344_62100 06 August 2014 Update from pre-release version to
include content reflecting generally
available software.

Revision 63141_61528 18 January 2014 First published revision.

http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt

FIS
FIS InfoHub

FIS InfoHub
March 13, 2018, Page iii

Table of Contents
1. About This Manual ... 1

How to Read This Manual .. 1
2. FIS InfoHub .. 3

InfoHub Overview .. 3
InfoHub Concepts ... 6

3. InfoHub Tasks ... 13
Installing InfoHub ... 13

Obtaining an InfoHub Distribution .. 13
Before You Begin .. 13
InfoHub Installation Procedure .. 13
InfoHub Environment Setup .. 14
InfoHub Product Routines and Reference Implementations .. 16

Operating an InfoHub ... 17
Loading a Configuration File ... 19
Listing all InfoHubs ... 20
Extracting a Configuration File .. 20
Starting an InfoHub .. 21
Monitoring (Checking) an InfoHub .. 22
Restarting an InfoHub ... 23
Shutting down an InfoHub .. 23
Rundown an InfoHub .. 24
Troubleshooting (Debugging) an InfoHub .. 25
Purging an InfoHub .. 26

4. Configuring an InfoHub .. 29
Defining an InfoHub Descriptor .. 29
Defining an Include Descriptor .. 30
Defining an Env Descriptor ... 30
Defining an InfoDict Domain Descriptor .. 33
Defining an InfoDictItem Descriptor .. 34
Defining a Publisher Descriptor ... 36
Defining a FileLine Descriptor ... 38
Defining a PipeLine Descriptor .. 41
Defining a Subscriber Descriptor ... 44
Defining a Subscription Descriptor .. 45
Writing an xLine Gleaner .. 48

5. Appendix A: FIS GT.M SNMP Plugin ... 53
Prerequisites ... 53
SNMP Plugin Overview ... 53
Installing the SNMP Plugin .. 58
Operating the SNMP Plugin ... 61
Starting the SNMP Plugin .. 62
Monitoring (Checking) an SNMP Plugin ... 62
Shutdown an SNMP Plugin ... 63
Performing a GET Request (snmpget) .. 63
Performing a GETNEXT Request (snmpgetnext) ... 65

FIS InfoHub

FIS
Page iv, March 13, 2018

r4.5
FIS InfoHub

Exploring the InfoHub MIB (snmptranslate) ... 67
Listening for Alerts (snmptrapd) .. 71

6. Appendix B: Reference Implementations ... 73
GT.M Monitoring .. 73

... 76
FileLineSyslogGleaner Operation ... 79
Uptime and Log File Monitoring .. 80

7. Appendix C: Error Messages .. 85
IHABSPATHREQ ... 85
IHACTIVE .. 85
IHASSERT ... 85
IHAXNFAIL .. 85
IHBADALLOC ... 85
IHBADAPIDIR .. 86
IHBADCOND4PER .. 86
IHBADCYCLE ... 86
IHBADDBPATH .. 86
IHBADDESCTYPE ... 86
IHBADDPSEP .. 87
IHBADENV ... 87
IHBADEXPR ... 87
IHBADEXT ... 87
IHBADFILE ... 88
IHBADNAME .. 88
IHBADPUBLISHER .. 88
IHBADSTOREDCONFIG .. 88
IHBADSUBSCRIBER .. 88
IHBADTEMPPWD ... 89
IHBADTIMEOUT .. 89
IHCFGNOTACTIVE ... 89
IHCIRCDICT ... 89
IHCLIBADOPT .. 89
IHCONFLOCKED .. 90
IHDEADDICT ... 90
IHDEBUG ... 90
IHDICTNAMEREQ .. 90
IHDUPDICT .. 90
IHDUPFILELINE .. 91
IHDUPITEM .. 91
IHDUPPIPELINE .. 91
IHDUPPUBLISHER .. 91
IHDUPSUBSCRBR ... 91
IHDUPSUBSCRPTN ... 92
IHENVNOFF ... 92
IHENVPLACE ... 92
IHETRAPINVOK ... 92
IHEXTRADELIM ... 92

FIS InfoHub

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page v

IHFLMISSDTLS ... 93
IHFLNOROTATE ... 93
IHGETDTTIMSTRFAIL .. 93
IHGETTIMEFAIL ... 93
IHGLNRERR .. 93
IHHUBDESCREQ .. 94
IHIDEVEN .. 94
IHIDINVALID ... 94
IHIDMISMATCH ... 94
IHIDORNAMEREQ .. 95
IHINFO ... 95
IHINVKEYFRMGLNR ... 95
IHINVPROCCONF ... 95
IHJOBENVRESTOREFAIL .. 95
IHJOBENVSETFAIL ... 96
IHJOBMSG .. 96
IHJOBNORTN ... 96
IHJOBSTARTDIR ... 96
IHMETANOINFO .. 96
IHMETANOSUB .. 97
IHMETANOTSUPRTD ... 97
IHMISSINGCONF .. 97
IHMISSINGPARMS .. 97
IHMISSINGPROC .. 98
IHMKTIMEFAIL .. 98
IHNAMEMISMATCH .. 98
IHNAMEREQ .. 98
IHNOACK ... 99
IHNOCHILD ... 99
IHNOCOMPLETE .. 99
IHNODUMMYGLD .. 99
IHNOERRSETUP ... 99
IHNOGBLDIR .. 100
IHNOINFOINVPER .. 100
IHNOINFONOVAL .. 100
IHNORESTART ... 100
IHNOSUBSCRIBER .. 100
IHNOSUBSCRIPTION .. 101
IHNOSUCHID ... 101
IHNOTBINSH .. 101
IHNOTCONFIGURED .. 101
IHNOTINTRIG .. 101
IHNOTRUNNING .. 102
IHNOXLINE4PUB .. 102
IHODDFLIDREQ .. 102
IHONEINFOHUBREQ .. 102
IHORPHNDMETA ... 102

FIS InfoHub

FIS
Page vi, March 13, 2018

r4.5
FIS InfoHub

IHPARENTUNDEF ... 103
IHPARSERROR .. 103
IHPATNOVAL ... 103
IHPIPECMDMISMATCH .. 103
IHPIPECMDREQ .. 103
IHPUBLISHERREQ ... 104
IHSEQNOMISMATCH ... 104
IHSETENVFAIL ... 104
IHSIGNALVALFAIL ... 104
IHSOMEEXPRREQ ... 104
IHSRVCLCKFAIL ... 105
IHSUBCONDINV ... 105
IHSUBINVPER ... 105
IHSUBSCRPTNNOPATH .. 105
IHSUBSPROB .. 105
IHSUBVALREQLIT .. 106
IHTMPDBFAIL .. 106
IHTNONENOSUB .. 106
IHTRIGFAIL .. 106
IHTRIGINSTALLFAIL .. 106
IHUNKNOWNERR ... 107
IHUNRESPPROC .. 107
IHZEROIDINVALID ... 107
IHZLINKFAIL .. 107

FIS
FIS InfoHub

FIS InfoHub
March 13, 2018, Page 1

Chapter 1. About This Manual

How to Read This Manual

Your InfoHub distribution has three parts – the InfoHub Product, Reference Implementation examples
developed using the InfoHub Product, and an SNMP Reporting Adaptor. To set up InfoHub to monitor
GT.M, read the following sections in the specified order– InfoHub Overview, InfoHub Concepts,
InfoHub Tasks, Appendix A: FIS GT.M SNMP Plugin, and Appendix B: Reference Implementations.
These sections help you understand the basics of InfoHub and customize Reference Implementation
examples.

To use InfoHub to build a general-purpose monitoring and alerting application, read the following
sections in the specified order–InfoHub Overview, InfoHub Concepts, InfoHub Tasks, Appendix
A: FIS GT.M SNMP Plugin, Appendix B: Reference Implementations, and Configuring an InfoHub.
Also, go through the M code of all the reference implementation example gleaners and review their
Configuration files to understand how they manage monitoring and alerting.

Notes marked as InfoHub Internals are meant for those who plan to support InfoHub or develop a
fairly advanced understanding of InfoHub. Other readers can skip the InfoHub Internals notes.

If you are in a hurry and just want to see a quick demonstration of how InfoHub works, proceed
directly to the Uptime and Log File Monitoring Reference Implementation section and follow the step-
by-step installation instructions provided in that section.

This page is intentionally left blank.

FIS InfoHub
Page 2, March 13, 2018

FIS
FIS InfoHub

FIS
FIS InfoHub

FIS InfoHub
March 13, 2018, Page 3

Chapter 2. FIS InfoHub

InfoHub Overview

The FIS Information Hub (InfoHub) is a general-purpose application to gather, store, access, and
monitor information. It is a "Hub" because it provides a central location for storing current and
historical information from multiple environments and from multiple sources in each environment.
InfoHub is "general-purpose" because it can be configured for use by tools via SNMP or any connector
API for analytics, trending, and reporting. InfoHub is an application written in GT.M, which drives
its monitoring framework and provides an n-tuple key-value datastore to hold information. InfoHub
includes a ready-to-run Reference Implementation for monitoring GT.M instances that run V6.0-002 or
above.

An InfoHub installation contains one or more of:

• InfoHub DB: A database that stores gathered information and manages interaction with Reporting
Adaptors.

• InfoHub Process: A process that manages the monitoring framework.

• Publisher Process: A process that manages a set of related xLine (PipeLine or FileLine) processes,
which gather, process, and file data from the Publisher's domain.

• FileLine Process: A process that monitors a file continuing to read data as it is appended. The
FileLine also tracks the file path in way that handles file renaming, removal and creation. A FileLine
is associated with a Publisher.

• PipeLine Process: A process that monitors a process using a UNIX pipe (by means of a GT.M PIPE
device). A PipeLine is associated with a Publisher.

• Subscriber: A specified condition that receives subsciption notifications from the InfoHub; a
Subscriber may also provide general query functionality of a Reporting Adaptor.

• Subscription: A specified condition that generates a notification to a Subscriber when it is met.

• Reporting Adaptor: A process that retrieves information from the InfoHub database; a reporting
adaptor, may, or may not, also be a Subscriber.

• Gleaner: A plug-in routine invoked by an xLine (PipeLine or FileLine) process. It pairs monitored
information with the relevant InfoDict Item ID(s) and returns those pairs to the xLine process for
filing in the InfoHub database.

• Plug-in: Code that interfaces to the InfoHub logic.

InfoHubs are general-purpose — one InfoHub can monitor multiple data sources, and a single data
source can be monitored by multiple InfoHubs. The operations of an InfoHub are data-driven and
defined in a text file called InfoHub Configuration File. The InfoHub Configuration File contains a
series of descriptors. Descriptors define Publishers that provide information to gather and store in

Chapter 2. FIS InfoHub InfoHub Overview

FIS
Page 4, March 13, 2018

r4.5
FIS InfoHub

the InfoHub, and Subscriptions for Subscribers to alert based on the information stored in InfoHub.
Descriptors also contain information about the environment, sources of data, and the frequency of
monitoring (periodic, continuous, or on-demand).

Because it uses character functions for processing external data and only uses byte functions in cases
where its internal operation makes them appropriate, an InfoHub can monitor data from sources that
rely on ASCII or on various UTF encoding modes. As an application, it can run either in M mode or
UTF-8 mode. It does restrict names in its configuration to ASCII, but it can monitor, process and store
UTF-8 or UTF16 data.

InfoHub is a GT.M application. Like any other GT.M application, its database can be journaled,
recovered, and replicated. An appropriately configured InfoHub using a reference implementation can
monitor its own database. InfoHub includes ready-to-run reference implementations: GT.M Monitoring
Reference Implementation and Uptime and Log File Monitoring (ULFM) Reference Implementation. For
more information on the Reference Implementations available with the InfoHub Distribution, refer to
Appendix B: Reference Implementations.

The following illustration is a Reference Implementation of InfoHub for monitoring operator log and
WebServer log, and the process output from df and free shell commands. This illustration is only
an example to explain a possible InfoHub framework in action. The InfoHub framework setup varies
depending on the monitored components and requirements.

In this illustration, the white lines represent process controlled connections used for monitoring and
the black lines represent the flow of data. The Instance A Publisher uses gleaners to gather data from
the system log, WebServer log, and process output from df and free, to store in the InfoHub database.

The relationship between an InfoHub and an Adaptor is of two types–Subscriber and Query. The red
line represents a Subscriber relationship where the Reporting Adaptor registers itself as a Subscriber
with the InfoHub. When data arriving at the InfoHub matches a specified Subscription condition,

InfoHub Overview Chapter 2. FIS InfoHub

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 5

InfoHub places the data in a queue and sends an interrupt (via a configured GT.M trigger) to the
Subscriber. The Subscriber then fetches the data from a queue in the InfoHub database where InfoHub
placed it before sending the interrupt. If the Subscriber is the last interested Subscriber, it removes the
data from the queue.

The black line represents a Query relationship where the Reporting Adaptor retrieves the requested
data from the InfoHub repository . The data flows from the InfoHub to the Subscriber, and the entire
flow is managed by the Reporting Adaptor - InfoHub is not aware that the Reporting Adaptor exists.

A single Adaptor can have either one or both relationships with InfoHub. The following illustration
demonstrates the relationships between InfoHub and Adaptor(s).

Note

InfoHub runs on GT.M V6.0-002 or above. To monitor log files, InfoHub requires the
the FOLLOW deviceparameter which was first introduced in V6.0-002. The FOLLOW
deviceparameter enables monitoring of sequential disk files that are concurrently
being updated by other processes. The GT.M Monitoring Reference Implementation
monitors GT.M V6.0-002 using the $ZPEEK() function, which extracts state
information from database/journal files. However, using GT.M programming and
shell scripting, it is possible to modify that reference implementation to monitor
any GT.M version prior to V6.0-002. Required modifications deal with the format
and content of file header listings, messages, and gleaning techniques that vary
from release to release. For example, to monitor an earlier release which lacks the
$ZPEEK() function, you have to use other techniques, such as parsing DSE output, for
example, with a program such as the %DSEWRAP utility. However, you do not need
to create an alternative functionality for the FOLLOW deviceparameter because it is
available within InfoHub as part of the V6.0-002 and can be used for sequential disk
files created by any prior GT.M version.

InfoHub is not limited to monitoring GT.M applications. Its ability to gather information and interface
with other Reporting Adaptors makes it a useful tool for a broad range of monitoring and alerting needs
including (but not limited to):

• Monitoring of STDERR, STDOUT, STDIN, application and system log files, configuration files, and so
on.

• Monitoring of processes and system resources.

Chapter 2. FIS InfoHub InfoHub Concepts

FIS
Page 6, March 13, 2018

r4.5
FIS InfoHub

• Alerting Subscribers based on pre-configured conditions.

• General-purpose storage and retrieval of time-series data.

InfoHub Concepts

This section explains InfoHub concepts and roles of all components of InfoHub.

InfoHub Configuration File
An InfoHub Configuration File contains line entries for descriptors that configure an InfoHub. Each
descriptor starts with a case-insensitive keyword that defines a type. Descriptors also typically
contain Names and IDs. A Name is case-sensitive and must start with an alphabetic character; it can
contain up to 32 alpha-numeric characters. An ID is a 31 bit positive integer.

InfoHub Descriptor
An InfoHub descriptor is generally the first non-comment line of an InfoHub Configuration File. It
establishes the ID and/or Name of the InfoHub to which the Configuration File applies.

Especially in a world of cloud-based computing, systems are ephemeral, but data gleaned from
monitoring them often has long-term value and will require storage beyond the lifetime of
individual systems. As the InfoHubID is the first level key used to store information in an InfoHub
database. Giving each InfoHub a distinct key simplifies merging data from multiple InfoHubs into
a database without changing first level keys. If ID is unspecified for a new InfoHubName, InfoHub
assigns a random ID at creation time. FIS recommends using a random ID for each new InfoHub.

The syntax of an InfoHub Descriptor is:

InfoHub:[InfoHubName][:InfoHubID]

InfoDict Descriptor
The InfoHub InfoDict is an information dictionary for data stored in an InfoHub. InfoDict
Descriptors describe the relationships between InfoHub components. There are two types of
InfoDict Descriptors – InfoDict Domain and InfoDict Item. An InfoDict Domain has a Descriptor
called InfoDict and groups a category of components into a name space. An InfoDict Domain can
have multiple parent Domains and can also be the parent of multiple child Domains.

An InfoDict Item has a Descriptor called InfoDictItem. An InfoDict Item is a named object within
an InfoDict Domain. By default, every Item in an InfoDict Domain has a path to all the Items in
any Domain that name it as a parent. If a domain has a parent that contains an item with an ID and
Name that match its own ID and Name, only the matching item in the parent domain has a path to
the items in the child domain. For example, if a domain D contains items A, B and X, and a second
domain C names D as a parent and contains items J and K, the configuration has paths A->J, A-
>K, B->J, B->K, X->J and X->K; if there is a third domain X with an ID that matches the ID of the X
item in D, names D as a parent and contains items P and Q the configuration also has paths X->P
and X->Q.

In the following illustration, gray and light blue boxes represent InfoDict Items and the rest
represent InfoDict Domains. You associate InfoDict Items with an element or a collection of

InfoHub Concepts Chapter 2. FIS InfoHub

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 7

elements you want to monitor. You typically create an InfoHub framework by associating InfoHub
components including Publishers, PipeLine Processors, FileLine Processors, and Subscriptions with
InfoDict Domains and Items. The association of InfoDict Domains/Items with InfoHub components/
monitoring elements is a matter of configuration and conventions in your organization. The
following example shows:

• An InfoHub called Simple Monitor.

• InfoDict Items with msg, Days, Load01, Load05, and Load15 to describe monitored information.

• A Publisher with System to mange information gathering.

• A PipeLine processor with UpTime to monitor process output (Days, Load01, Load05, and
Load15) of the uptime command.

• FileLine processors called AuthLog and OpLog to monitor messages (msg) in authentication log (/
var/log/auth.log) and system log (/var/log/messages).

• Subscriptions called GTMErr, AuthFail, PatchMe, and DontBeLazy each to watch a specified
condition and send notifications to Subscribers. For example, a condition such as msg["Fail"
could help Monitoring Management determine the occurrence of a failed login attempt.

• A Reporting Adaptor with Monitoring Management that uses the GTMErr, AuthFail, PatchMe,
and DontBeLazy Subscriptions and also, on request, gathers other data from System Monitor
to report information. Additionally, the diagram shows Monitoring Management as a reporting
adaptor that interfaces with other Monitors, using other components in the same InfoHub or
other InfoHubs, and their Subscriptions to aggregate information across multiple systems.

Chapter 2. FIS InfoHub InfoHub Concepts

FIS
Page 8, March 13, 2018

r4.5
FIS InfoHub

The bold text starting from Simple Monitor towards System up to Load01 denotes one Path.

This illustration is conceptual and merely describes at a high-level how InfoHub uses InfoDicts.
In the real world, you would create InfoDict hierarchy and Paths according to your monitoring
requirements, your conventions, and nuances of the business processes in your organization.

The syntax of an InfoDict Domain Descriptor is:

InfoDict:InfoDictName:[InfoDictID][:{ParentInfoDictID |
 ParentInfoDictName}]

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX1.txt

The syntax of an InfoDict Item Descriptor is:

InfoDictItem:{InfoDictID |
 InfoDictName}:ItemName:[InfoDictItemID]:[Label]:[Type][:ItemDescription]

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX2.txt

Publisher Descriptor
Manages the FileLine and PipeLine processes gathering information for a particular environment.

The syntax of an Env Descriptor is:

Publisher:Publisher:{InfoDictID|InfoDictName}:[PublisherName]:[PublisherID]:[APIDir]:
[TempPWD]:[TempDBAlloc]:[TempDBExtend]

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX3.txt

Env Descriptor
Manages the environment provided to information gathering processes. Depending on its position
in the configuration file, an Env descriptor can be associated with the InfoHub itself (that is,
common to all Publishers), or it can be associated with a specific Publisher, which applies it to any
PipeLine processing for that Publisher.

The syntax of an Env Descriptor is:

Env:EnvVarName[=[Value]][,,,,]

FileLine Descriptor
A FileLine descriptor defines the monitoring of a text file. The Publisher master process JOBs a
FileLine process which reads the monitored file, line by line, executing a GT.M extrinsic function
invocation for each line read to gather per-line information. The FileLine process waits for and
reads lines from the monitored file (behavior equivalent to a tail -f). The InfoDict Descriptor
illustration associates OpLog and AuthLog each with a FileLine.

The syntax of a FileLine Descriptor is:

FileLine:{InfoDictID | InfoDictName}:FileLineName:[FileLineID]:{PublisherID |
 PublisherName}:/path/to/Filename:[CheckCycle]:[Timeout]:[PieceSeparator]:[PreExpr]:
[InfoExpr]:[PostExpr]

InfoHub Concepts Chapter 2. FIS InfoHub

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 9

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX5.txt

PipeLine Descriptor
A PipeLine Descriptor defines the aspects of monitoring output from a process. The monitored
process can be a GT.M (any version) process or any other UNIX process. The Publisher master
process JOBs a PipeLine process which OPENs a PIPE device using the configured command and
READs its stdout and/or stderr line by line, feeding each one to the gleaner extrinsic function
configured as InfoExpr. The InfoExpr gleaner sub-routine performs any processing of the raw
input from the PIPE into zero or more key:value pairs ready for filing by the PipeLine process in
the InfoHub database. The PipeLine can also be configured with a PreExpr and/or a PostExpr. The
InfoDict illustration associates the InfoDict Name UpTime with a PipeLine.

The syntax of a PipeLine Descriptor is:

PipeLine:{InfoDictID | InfoDictName}:PipeLineName:[PipeLineID]:{PublisherID |
 PublisherName}:PipeCmd:[PipeCycle]:[Timeout]:[PieceSeparator]:[PreExpr]:[InfoExpr]:
[PostExpr]

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX6.txt

xLine Gleaner
An xLine Gleaner implements the PreExpr (optional), InfoExpr and PostExpr (optional) used in the
FileLine and PipeLine. The gleaner performs any processing of each raw input line from the file
into zero or more key:value pairs ready for filing by the xLine process in the InfoHub database. The
xLine process checks each key returned by the gleaner extrinsic function to see that it's configured,
and files it if it is or discards it if it isn't. The xLine can also be configured to invoke a PreExpr, that
might perform any appropriate initialization when it first starts and a PostExpr that might provide
summary information when it shuts down. PreExpr and PostExpr can return zero or more key:value
pairs to the xLine base routine. Typically, you use a FileLine Gleaner for active monitoring of a text
file and a PipeLine Gleaner for any formatting of information returned by the PIPE coprocess.

Include Descriptor
An Include Descriptor specifies a file that contains additional descriptors, and permits different
organizations of descriptors, such as by type or target environment.

The syntax of an Include Descriptor is:

Inc:Include:FilePathSpecification

Subscriber Descriptor
The InfoHub alerts a Subscriber when a configured condition occurs. A Subscriber can monitor
multiple Subscriptions. In the InfoDict illustration, an example for a Subscriber is Monitoring
Management which gets alerted when a configured condition such as msg["Fail" occurs.
Subscribers provide reactive and passive monitoring where there is a need to react when a
Subscription condition occurs.

The syntax of a Subscriber Descriptor is:

Subscriber:{InfoDictID |
 InfoDictName}:[SubscriberName]:[SubscriberID]

Chapter 2. FIS InfoHub InfoHub Concepts

FIS
Page 10, March 13, 2018

r4.5
FIS InfoHub

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX8.txt

For more information, see "Reporting Adaptor".

Subscription Descriptor
A Subscription watches for a condition in an InfoDict Item to send alerts to its Subscribers. The
condition is specified using a GT.M binary operator (excluding concatenation and non-relational
arithmetic operators) or the (case-insensitive) text "NoInfo". The GT.M binary operator condition
can be used to establish several monitoring conditions including setting thresholds, detecting
changes in the value of the InfoDict item, and so on. A Subscription can have multiple Subscribers
and also apply to multiple Publishers.

"Noinfo" detects a period during which the specified InfoDict Item receives no new data. It is used
for monitoring the lack of activity on an InfoDict Item. The InfoDict illustrations associate PatchMe,
DontbeLazy, GTMError, and AuthFail with a Subscription because they watch a specified condition
(for example, Load15<1).

The syntax of a Subscription Descriptor is:

Subscription:{InfoDictID |
 InfoDictName}:SubscriptionName:[SubscriptionID]:{InfoDictID | InfoDictName}:
{InfoDictItemID | InfoDictItemName}:Condition:[Value]:[Period]:[entryref]:
[SubscriberID,...]:[PublisherID,...]

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX9.txt

Reporting Adaptor
A Reporting Adaptor generates reports from the data gathered in InfoHub. A Reporting Adaptor
is not a part of the InfoHub core product. The relationship between an InfoHub and an Adaptor
is of two types – Subscriber and Query. A Reporting Adaptor has a Subscriber relationship when
it registers with an InfoHub to receive alerts from Subscriptions. A Reporting Adaptor has a
Query relationship with InfoHub when it looks at data at its own initiative. A Reporting Adaptor
may have a Subscriber, Query, or Subscriber and Query relationship with an InfoHub. These
relationships are described in the Overview section. The InfoHub Reference Implementation
includes a ready-to-use SNMP Reporting Adaptor for sending aggregated data using an SNMP sub-
agent via the Internet standard AgentX protocol (RFC 2741) for report presentation. The InfoDict
illustration, Monitoring Management, uses a Reporting Adaptor. You can use a Reporting Adaptor
for both proactive monitoring, to access data from InfoHub, as well as for reactive monitoring, in
response to an alert to a Subscriber from InfoHub. Although a Subscribers must be registered with
InfoHub, proactive monitoring can be transparent to InfoHub.

The syntax of a Subscriber Descriptor is:

Subscriber:{InfoDictID |
 InfoDictName}:[SubscriberName]:[SubscriberID]

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX10.txt

Configuration Processing
An InfoHub Configuration File must cover all existing configuration to be retained or modified as
well as any new configuration. Configuration processing disables any preexisting item(s) omitted

InfoHub Concepts Chapter 2. FIS InfoHub

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 11

by a new file, but does not purge its configuration (or its related data). You can purge information
in the InfoHub that is older than a specified time.

The following aspects are common to all InfoHub Configuration Files:

• InfoHub configuration files are descriptive, line-oriented, ASCII or UTF-8 text files. If you use
UTF-8 characters outside the ASCII subset in the configuration files, InfoHub itself must run in
UTF-8 mode.

• Leading and trailing whitespace (tab or space) is ignored.

• Lines starting with two forward slashes ("//"), as well as blank lines, are comment lines.

• Names (such as a PublisherName) start with an alphabetic character, followed by zero to 31
ASCII alphanumeric characters. Except where otherwise explicitly stated, InfoHub uses case-
sensitive Names. Attempting to use a Name that does not meet these parameters produces an
IHBADNAME error.

• IDs (such as a PublisherID) are positive (non-zero) canonical GT.M integers; attempting to use
zero (0) for an ID produces an IHZEROIDINVALID error; attempting to use a non-integer or out-
of-range ID produces an IHIDINVALID error. Configuration processing supplies IDs for items
specified by Name, but without an ID. Allowing the configuration processing to generate random
IDs for items such as Publishers makes it easier to move existing information between InfoHub
databases with almost no likelihood of conflict. You should make an explicit choice of ID under
the following circumstances:

• The gleaner needs to coordinate with the configuration - for example the GT.M monitoring
reference implementation use gather_instance_info.sh and gtmConfGenerator.m to generate
unique InfoDictItems for the databases and instance names in a GT.M instance.

• You have multiple Subscribers subscribing to different Subscriptions - Subscriptions associate
with Subscribers by ID.

• You have multiple Publishers producing Subscriptions in overlapping, but non-identical sets -
Subscriptions associate with Publishers by ID.

• Attempting to configure a descriptor with an unrecognized type produces an IHBADDESCTYPE
error.

• Reading the same Configuration File repeatedly is a no-op.

• While the first colon (:) is frequently required, other trailing colon delimiters are optional,
although for simplicity the descriptor syntax definitions technically appear to require
them. Attempting to configure a descriptor with too many colon (:) delimiters produces an
IHEXTRADELIM error - this attempts to guard against inadvertent use of embedded delimiters.

• Fields shown as optional may not be optional under all conditions - for example: while both
Name and ID may be optional, typically you must supply at least one of them, and, for a pattern
match (?) or NoInfo condition, Value is not required (actually not accepted), for other conditions,
it is required.

Chapter 2. FIS InfoHub InfoHub Concepts

FIS
Page 12, March 13, 2018

r4.5
FIS InfoHub

The InfoHub process parses and applies the Configuration File. The presence of even one error
in the Configuration File or any associated Include files prevents the configuration process from
loading its specifications at all and from recording their contents. In order to facilitate rapid
debugging of Configuration files, the configuration process attempts to continue processing after
it detects most errors, which can produce ancillary or duplicate errors. The configuration process
records the fact that it read and either accepted or rejected the Configuration File.

FIS
FIS InfoHub

FIS InfoHub
March 13, 2018, Page 13

Chapter 3. InfoHub Tasks

Installing InfoHub

This section contains information about installing and creating an environment configuration for
InfoHub.

Obtaining an InfoHub Distribution

InfoHub is available under the terms of the Affero GNU General Public License (AGPL) version 3, from
Source Forge (http://sourceforge.net/projects/fis-gtm). Contact FIS if you wish to obtain InfoHub under
the terms of another license.

Before You Begin

Ensure that you have a correctly configured installation of the following software:

Software Minimum Version Notes

GT.M V6.0-002 or above InfoHub requires a correctly
installed distribution for GT.M
V6.0-002 or above. For information
on installing GT.M, refer to
"Installing GT.M" chapter of
the UNIX Administration and
Operations Guide.

gtmposix 63250_37800 InfoHub requires a correctly built
gtmposix plugin.

Infohub uses the gtmposix plugin
to access POSIX functions available
on POSIX platforms (UNIX/
Linux). For more information on
installing the gtmposix plugin,
refer to readme.txt available in the
gtmposix distribution available on
sourceforge.net.

InfoHub Installation Procedure

Find or create a directory to hold your InfoHub distribution files and make that your current directory.

Example:

http://sourceforge.net/projects/fis-gtm

Chapter 3. InfoHub Tasks Installing InfoHub

FIS
Page 14, March 13, 2018

r4.5
FIS InfoHub

$ cd /opt

Unpack the InfoHub distribution to the current directory with a command such as the following (your
UNIX version may require you to first use gzip to decompress the archive and then tar to unpack it; the
tar options may also vary):

$ tar zxvf /Distrib/InfoHub/InfoHub.63344_62100.tar.gz

$ mkdir /opt/InfoHub/configs

Congratulations! InfoHub is now unpacked in the /opt/InfoHub directory. Proceed to InfoHub
Environment Setup to set up a default environment.

InfoHub Environment Setup

Your InfoHub distribution comes with three Bourne shell environment setup scripts that automatically
define InfoHub environment variables and display the commands to create an InfoHub database and
a global directory if they do not already exist. These scripts are designed to give you a friendly out-
of-the-box InfoHub operations experience. Even though you can perform normal InfoHub operations
without using these scripts, it is important to go through these scripts to understand the how to
manage environment configuration for InfoHub. These scripts are as follows:

infohub_site.sh
Contains placeholders for defining ihsrcdir (the source directory of your InfoHub distribution),
gtmgbldir (the InfoHub global directory which resides in the same directory as the InfoHub
database and services), and gtm_dist (the GT.M distribution used to run InfoHub).

infohub_profile.sh
Sources $HOME/infohub_site.sh, creates an environment for InfoHub using the environment
variables defined in infohub_site.sh. It displays commands to create an InfoHub database and
global directory if they do not already exist. When it detects a misconfiguration, it displays the
misconfigured environment variable name and stops execution.

To use these environment setup scripts, perform the following steps:

1. Copy infohub_site.sh to $HOME/.infohub_site.sh.

2. Use your favorite editor to open $HOME/.infohub_site.sh or customize it in place as
'custom_infohub_site.sh' and set appropriate values for:

• ihsrcdir: Path to the directory holding your InfoHub distribution files.

• gtmgbldir: Absolute path to the global directory where you want to place your InfoHub database
and InfoHub services.

• gtm_dist: Path to the directory of the GT.M distribution (V6.0-002 or above) used to run InfoHub.

3. Source infohub_profile.sh on the command line or add the following command in your ~/.profile.

$ source /path/to/infohub_profile.sh

Installing InfoHub Chapter 3. InfoHub Tasks

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 15

When you source a infohub_profile.sh, it displays the commands to set up a default InfoHub
environment (global directory and a default database) if none exists.

4. Execute the following command to load the server1.conf configuration file (discussed later in this
document)

$ $gtm_dist/mumps -run InfoHub --action=configure
 --file=$ihsrcdir/configs/server1.conf

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX15.txt

5. Execute the following command to start an InfoHub:

$ $gtm_dist/mumps -run InfoHub --action=start

6. Execute the following command to display the status of InfoHub with process listing:

$ $gtm_dist/mumps -run InfoHub --action=full

7. Execute the following command to shutdown an InfoHub:

$ $gtm_dist/mumps -run InfoHub --action=shutdown

8. Execute the following command to rundown an InfoHub:

$ $gtm_dist/mumps -run InfoHub --action=rundown

To perform any InfoHub operation without using the infohub_*.sh scripts, at a bare minimum, you
need to set the following environment variables:

• gtm_dist: Set the gtm_dist environment variable to point to the location of the GT.M distribution
(which must be V6.0-002 or higher).

export gtm_dist=/usr/lib/fis-gtm/V6.0-002_x86_64

• GTMXC_gtmposix: Set the environment variable GTMXC_gtmposix to point to the absolute
location of gtmposix.xc.

export GTMXC_gtmposix=$gtm_dist/plugin/gtmposix.xc

• gtmroutines: Set the environment variable gtmroutines to include the current directory and location
of the InfoHub installation, here we used /opt/InfoHub, $gtm_dist and the location of the %POSIX.m
routine (typically installed to $gtm_dist/plugin/r).

export gtmroutines="$PWD(/opt/InfoHub /opt/InfoHub/pipecmds /opt/InfoHub/plugins)
 $gtm_dist/plugin/o($gtm_dist/plugin/r) $gtm_dist"

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX22.txt

• gtmgbldir: Set the environment variable gtmgbldir to point to the location of the global directory for
your InfoHub database.

export gtmgbldir=/path/to/InfoHub.gld

Chapter 3. InfoHub Tasks Installing InfoHub

FIS
Page 16, March 13, 2018

r4.5
FIS InfoHub

If you are not using the InfoHub environment setup scripts provided with your InfoHub distribution,
set the minimum key and record sizes to 1000 and 4000 respectively and block size to 4096 for the
global directory for your InfoHub database. The InfoHub Bourne shell Environment setup scripts run a
GDE command file to automatically set these values for the InfoHub global directory.

For more information on performing InfoHub operations, refer to Starting an InfoHub, Monitoring
(checking) an InfoHub, Restarting an InfoHub, Shutting down an InfoHub, Rundown an InfoHub,
Troubleshooting (debugging) an InfoHub, and Purging an InfoHub.

InfoHub Product Routines and Reference Implementations

The following table describes some files in your InfoHub distribution. Note that InfoHub Product
Routines files are part of the core InfoHub product and the Reference Implementations files are
examples using InfoHub. The Uptime and Log File Monitoring Reference Implementation (ULFM) is one
of the ready-to-run implementations that monitors the output of the uptime command, operator log,
and authentication log requiring any additional configuration.

InfoHub Product Routines

IHsnmp.m Implements the InfoHub SNMP Adaptor that performs all SNMP Plugin operations.

InfoHub.m Implements the InfoHub API for all InfoHub operations.

InfoHubActionHandler.m Implements orderly execution of InfoHub actions.

InfoHubConfigure.m Validates and loads an InfoHub Configuration File.

InfoHubCfgExtract.m Implements extraction and listing of configuration files.

InfoHubCli.m Implements parsing of InfoHub command syntax to invoke InfoHub actions
actions.

InfoHubCliParser.m Used by the InfoHub routine to parse the command line options.

InfoHubDBSetup.m Routine that creates a temporary database environment (mumps.gld and
mumps.dat) for each Publisher; if necessary, removes the existing temporary
database.

InfoHubError.m Implements the InfoHub's Error handler.

InfoHubErrorMessage.m The collection of InfoHub Error messages with severity codes.

InfoHubFileLine.m Implements the FileLine job.

InfoHubJobs.m Used by the InfoHub routine to JOB a process and to obtain its status.

InfoHubMain.m Implements the main InfoHub job.

InfoHubNoInfo.m Implements the Subscription that detects no change of a configured value within a
configured period.

InfoHubNotify.m Implements basic InfoHub subscription triggers

InfoHubPublisher.m Implements the Publisher job.

Operating an InfoHub Chapter 3. InfoHub Tasks

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 17

InfoHub Product Routines

InfoHubPurge.m Implements time-based removal of data from the InfoHub globals.

InfoHubPipeLine.m Implements the PipeLine process.

InfoHubProcessMonitor.m Implements detection of process failure and restart.

InfoHubUtils.m Common utility routines for InfoHub.

InfoHubVersion.m The file with the current version of the InfoHub. The version is taken from the
release date in the form of $HOROLOG where an underscore replaces the comma.

ULFM Reference Implementation files

LogFileGleaner.m A simple gleaner routine that prepends each line read with a key, 9999. The format
of result is <key>:<line_read_value>.

UptimeGleaner.m A gleaner program that processes the output of the uptime command. It separates
the uptime command fields into the key value pairs

SimpleMonitor.conf The InfoHub configuration file used to configure the ULFM Reference
Implementation.

Operating an InfoHub

You can interact with InfoHub from the shell and from within GT.M. To interact with an InfoHub from
the shell, the general command is:

$gtm_dist/mumps -run InfoHub --action=<Action>
 [--<Action_parameters>[=values]...] [--infohub=InfoHubID|InfoHubName] [--gbldir=/path/to/
globaldirectory]

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX24.txt

• <Action> is one of the following: configure, extract, jobexam, purge, restart, rundown, start, status,
shutdown, usage, version, or list. The default action is status.

• [--<Action_parameters>[=values]...] depends on the selected <Action>.

• An InfoHub database can store multiple InfoHubs and there can be multiple databases each holding
multiple InfoHubs. You can perform administration operations on only one InfoHub with any
given command. The InfoHub command line interface provides the optional --infohub and --
gbldir arguments to select an InfoHub. You can provide either or both these arguments to select an
InfoHub. Even if these two arguments are not specified, the InfoHub logic tries using the current
$zgbldir (initialized from the gtmgbldir environment variable) to select the InfoHub that was last
configured for the global directory.

• --gbldir is an optional argument that specifies the path of the global directory for the InfoHub
database. If the argument specifies a relative path, the InfoHub API automatically converts it to an
absolute path. An absolute path is necessary for two reasons. First, InfoHub uses the global directory
as a possible means to unambiguously identify an InfoHub when a command does not specifically

Chapter 3. InfoHub Tasks Operating an InfoHub

FIS
Page 18, March 13, 2018

r4.5
FIS InfoHub

identify one. Second, because they run in a temporary directory, InfoHub JOB'd processes typically
need an absolute path to the global directory.

Use the --gbldir argument when your shell environment has a different setting for the environment
variable gtmglbdir or when you want to select between different InfoHub database views.

• --infohub is an optional argument that specifies the InfoHub ID or InfoHub Name of an InfoHub. Use
this argument when you need to perform administration operations for a specific InfoHub when a
database holds more than one InfoHub.

• Configuration processing stores the last global directory used to configure each InfoHub. If --infohub
is not specified but $ZGBLDIR points to an InfoHub database, the InfoHub CLI automatically tries to
determine an InfoHub by matching the absolute path in $ZGBLDIR, which could be set from either
the gtmgbldir environment variable or the --gbldir argument, with one last used for an existing
InfoHub.

• If neither --infohub nor --gbldir is specified and there is no default InfoHub for the current
$ZGBLDIR, configuration processing tries to select an InfoHub ID using the InfoHub Descriptor
entry. If it does not find an InfoHub in the Descriptor entry, it automatically generates a random
InfoHub Name and InfoHub ID for a new InfoHub.

• To select an InfoHub, in most cases you would use --infohub to specify the InfoHub Name or
InfoHubID or let the InfoHub API determine it automatically from the InfoHub Descriptor.

To interact with an InfoHub from within GT.M, invoke an entryref like:

<Action>^InfoHub(InfoHubID[,values])

• While the shell command line interface automatically assigns suitable default options/values,the
InfoHub API entry points require specified values.

• InfoHubID specifies the numeric ID of an InfoHub. API users must convert InfoHub Names to
numeric IDs.

• All <Action> entry points in InfoHub API produce output to $IO. Future enhancement may remove
this functionality.

InfoHub Internals

^InfoHubConf("GlobalsDirs",$zgbldir) contains the ID of the most recently
configured InfoHub.

With a few exceptions, e.g the Actions is "status", "list", or "configure", the
underlying mechanism for taking action on an existing InfoHub is to place
information in the ^InfoHubActivity global and signal the InfoHubMain
service process to invoke its $ZINTERRUPT, which in turn causes it to look in
^InfoHubActivity for instructions on which to act. The action initiating process
returns to the operator once it sees an acknowledgement that the InfoHubMain
service has taken over the action. Although FIS plans to maintain stability of the

Loading a Configuration File Chapter 3. InfoHub Tasks

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 19

published CLI in future releases of InfoHub, without prior notice, FIS may change the
underlying mechanism within any InfoHub release.

When starting an InfoHub from the shell command line or from GT.M using the
appropriate entryref, the InfoHubMain launches with a JOB command, and control
returns to the invoking process once the InfoHub has successfully launched.

InfoHub API

More details about the InfoHub API are also documented in the file InfoHub/
InfoHub.m. Comments before each entryref describe the input parameters and their
types.

Loading a Configuration File

To load a configuration file on an InfoHub from the shell, execute a command like:

$ $gtm_dist/mumps -run InfoHub --action=configure --file=<ConfigFileName>
 [--verbose[=filename]]

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX26.txt

• --file specifies the relative or absolute path to the location of the base InfoHub Configuration File.

• --gbldir specifies the absolute path to the location of the global directory for InfoHub.

• --verbose enables verbose output. If you specify --verbose=filename it sends the output to the
specified file; --verbose alone sends the output to stdout. Use this option to debug configuration
errors.

Attempting to configure a file that can't be opened for reading, or is defective, produces an IHBADFILE
error. Attempting to configure an InfoHub with an improperly installed gtmposix plug-in may produce
an IHGETTIMEFAIL error.

To load a configuration file on InfoHub from within GT.M, invoke the following entry point in the
InfoHub API as an extrinsic function:

$$configure^InfoHub("InfoHubID","/path/to/ConfigFileName")

If the configuration file contains an InfoHub descriptor, the InfoHubID is optional and, if supplied, must
match the one in the descriptor.

InfoHub Internals

As IDs, and possibly Names, may have meaning for tools that report on ^InfoHubInfo
data, the Infohub configuration processing rejects attempts to change the association
between an ID and a Name. A user with sufficient understanding of, and access to,

Chapter 3. InfoHub Tasks Listing all InfoHubs

FIS
Page 20, March 13, 2018

r4.5
FIS InfoHub

the InfoHub database can change such associations programmatically using GT.M
code.

Example:

$ $gtm_dist/mumps -run InfoHub --action=configure
 --file=samples/SimpleMonitor.conf

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX28.txt

This example uses the CLI for InfoHub to load an InfoHub Configuration File.

GTM>if $$configure^InfoHub("","samples/SimpleMonitor.conf")

This example loads the server1.conf Configuration File on InfoHub.

GTM>if $$configure^InfoHub("","samples/SimpleMonitor.conf")
Loading the configuration file samples/SimpleMonitor.conf
GTM>if $$configure^InfoHub("","samples/SimpleMonitor.conf")
Loading the configuration file samples/SimpleMonitor.conf
Configuration unchanged
GTM>

This example attempts to load the same SimpleMonitor.conf twice using 7421 as the InfoHub ID.

Listing all InfoHubs

To list all InfoHubs available in the current global directory, execute a command like:

$ $gtm_dist/mumps -run InfoHub --action=list

To list all InfoHubs available in the current global directory from within GT.M, invoke the following
entry point in the InfoHub API as an extrinsic function:

$$list^InfoHub()

Example:

$ $gtm_dist/mumps -run InfoHub --action=list

GTM>if $$list^InfoHub()

Both examples list all InfoHubs available in the current global directory.

Extracting a Configuration File

To extract the contents of an InfoHub Configuration File loaded for an InfoHub, execute a command
like:

$ $gtm_dist/mumps -run InfoHub --action=extract [--configuration=[0|1|2|3|..]

Starting an InfoHub Chapter 3. InfoHub Tasks

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 21

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX35.txt

This command writes the configuration to standard output. The contents of "Included" files are also in
the output.

--configuration specifies the Configuration Number of the InfoHub Configuration File. InfoHub
associates a unique Configuration Number with every correctly configured InfoHub Configuration File
loaded for an InfoHub. When configuration is not specified or is specified as 0, InfoHub produces a
historic listing of all correctly configured InfoHub Configuration Files that were loaded for an Infohub.
The listing includes Configuration Numbers, location of the InfoHub Configuration Files, and the time
when they were loaded on InfoHub.

To extract an InfoHub configuration file from within GT.M, invoke the following entry point in the
InfoHub API as an extrinsic function:

$$extract^InfoHub(InfoHubID,0|1|2|3|..)

Example:

$ $gtm_dist/mumps -run InfoHub --action=extract
Configuration 1 was installed on 1383129299046237 from the file samples/SimpleMonitor.conf
Configuration 2 was installed on 1383132419190354 from the file samples/SimpleMonitor.conf
Configuration 3 was installed on 1383132426677351 from the file
 samples/SimpleMonitor.conf

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX37.txt

GTM>if $$extract^InfoHub("11",0)

Both examples produce a historic listing of all correctly configured InfoHub Configuration Files that
were loaded for an InfoHub.

Starting an InfoHub

To start an InfoHub from the shell, execute a command like:

$ $gtm_dist/mumps -run InfoHub --action=start

• This command uses the current configuration and starts the InfoHub process.

• When starting an InfoHub for the first time, the InfoHub processes the current InfoHub
configuration, acting on each item as it loads it.

• The "start" action also suffices to start an InfoHub from a "dirty" shutdown, for example, after a
system crash, or after an inadvertent MUPIP STOP of the InfoHubMain process. Startup after a
system crash issues an error if the database has not been recovered to a clean state. Startup after
an inadvertent MUPIP STOP of the main process causes the InfoHub to reconnect with existing
processes and start missing processes. If the restart after a crash uses a different configuration,
existing processes are all shutdown and restarted.

• In the event that two simultaneous start commands are sent, only one succeeds. The other exits with
an unacknowledged startup request.

Chapter 3. InfoHub Tasks Monitoring (Checking) an InfoHub

FIS
Page 22, March 13, 2018

r4.5
FIS InfoHub

To start an InfoHub from within GT.M, invoke the following entry point in the InfoHub API as an
extrinsic function:

$$start^InfoHub(InfoHubID,$zgbldir)

Example:

$ $gtm_dist/mumps -run InfoHub --action=start

This example starts the InfoHub most recently associated with the current global directory.

GTM>if $$start^InfoHub(7421)
JOB 10215 InfoHub Active at 1383133001659001

This example starts the InfoHub whose ID is 7421.

Monitoring (Checking) an InfoHub

To check the status of an InfoHub from the shell, execute a command like:

$ $gtm_dist/mumps -run InfoHub --action=status [--full]

• This command displays a summary of the current status and health of the InfoHub.

• --full produces a process listing of all InfoHub processes.

To check the status of an InfoHub from within GT.M, invoke the following entry point in the InfoHub
API as an extrinsic function:

$$status^InfoHub(InfoHubID,{0|1})

0 specifies one line summary of the current status and health of the specified InfoHub and 1 is
equivalent to the --full option.

Example:

$ $gtm_dist/mumps -run InfoHub --action=status

This example displays the one line summary on the status and health of the most recent InfoHub.

GTM>if $$status^InfoHub(7421,1)
InfoHub ID |InfoHub Name |State
7421 |DEMO |Running
Process listing
 10215 InfoHub /usr/lib/fis-gtm/V6.0-002/mumps -direct InfoHub ^InfoHubMain 7421
 /opt/InfoHub/InfoHub.gld
 10222 NoInfo /usr/lib/fis-gtm/V6.0-002/mumps -direct InfoHub ^InfoHubNoInfo 7421
 04261677
 3 /opt/InfoHub/InfoHub.gld
 10217 Publishers /usr/lib/fis-gtm/V6.0-002/mumps -direct InfoHub ^InfoHubPublisher 7421
 321
 /opt/InfoHub/InfoHub.gld

Restarting an InfoHub Chapter 3. InfoHub Tasks

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 23

 10305 FileLine /usr/lib/fis-gtm/V6.0-002/mumps -direct InfoHub ^InfoHubFileLine 7421
 321 3
 123 /opt/InfoHub/InfoHub.gld

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX46.txt

This example displays the status of InfoHub ID 7421 and produces a process listing of InfoHub
processes.

Restarting an InfoHub

To pick up a configuration revision and restart an InfoHub, execute a command like:

$ $gtm_dist/mumps -run InfoHub --action=restart

To pick up a configuration revision and restart an InfoHub from within GT.M, invoke the following
entryref:

restart^InfoHub(InfoHubID|InfoHubName)

This command stops all components whose configuration has changed and starts all components whose
configuration has changed (which might not be the same set); attempting to restart of a non-running
InfoHub produces an IHNOTRUNNING error.

Important

The restart command also clears prior restart history for each monitored process.
Service monitors will not restart a configuration that fails to start five times within
five minutes.

Shutting down an InfoHub

To effect a clean InfoHub shutdown from the shell, execute a command like:

$ $gtm_dist/mumps -run InfoHub --action=shutdown

To effect a clean InfoHub shutdown from within GT.M, invoke the following entry point in the InfoHub
API as an extrinsic function:

$$shutdown^InfoHub(InfoHubID|InfoHubName|^InfoHubConf("GlobalsDirs",$zgbldir))

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX50.txt

Important

Although an InfoHub can be stopped with the MUPIP STOP command, FIS
recommends against using MUPIP STOP to shut down an InfoHub because it leaves
orphaned service processes.

Chapter 3. InfoHub Tasks Rundown an InfoHub

FIS
Page 24, March 13, 2018

r4.5
FIS InfoHub

Example:

$ $gtm_dist/mumps -run InfoHub --action=shutdown

This example shuts down the InfoHub most recently updated using the current global directory.

GTM>if $$shutdown^InfoHub(7421)

This example shuts down the InfoHub having 7421 as the InfoHub ID.

InfoHub Internals

On receipt of a shutdown command (for example, from mumps -run InfoHub --
action=shutdown), the InfoHubMain process sends a shutdown message (using the
interrupt-based mechanism) to each NoInfo and Publisher process. Each Publisher
process in turn sends similar shutdown messages to monitored FileLine and PipeLine
processs.

FileLine processs acknowledge receipt, switch their file access mode from FOLLOW
to NOFOLLOW with a USE command, continue processing until the end-of-file or
Timeout elapses, log their shutdown, and then halt.

For a PipeLine process, the Publisher process sends it "shutdown" message. The
PipeLine process sends a "shutdown message" to the PipeCmd process. The PipeCmd
process does a READ x:1 at the start of every pass through for data collection. If it
reads something as opposed to the 1 second timeout, the sub-process terminates
immediately. If the process created by the PipeCmd is a GT.M process, it must READ
or WRITE to its principal device in order to detect that PipeLine process has closed
the pipe; it should then HALT.

Each Publisher process waits to receive acknowledgement and shutdown completion
status from each monitored xLine processes. Only then does it logs its own
shutdown, and shuts down. When the InfoHubMain receives acknowledgements
from all NoInfo and Publisher processes, it logs its shutdown, and shuts down. The
shell command or extrinsic function call then completes.

Rundown an InfoHub

To perform an InfoHub rundown from the shell, execute a command like:

$ $gtm_dist/mumps -run InfoHub --action=rundown

After a shutdown caused by something other than an InfoHub "shutdown" action, such as a MUPIP
STOP, or a system crash, or a switch-over to a new primary, a rundown cleans up the database.

To perform an InfoHub rundown from within GT.M, invoke the following entry point in the InfoHub
API as an extrinsic function:

$$rundown^InfoHub(InfoHubID)

Troubleshooting (Debugging) an InfoHub Chapter 3. InfoHub Tasks

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 25

Troubleshooting (Debugging) an InfoHub

To debug an InfoHub from the shell, execute a command like:

$gtm_dist/mumps -run InfoHub --action=jobexam
 [--pidlist=<comma,delimited,list,of,PIDs>]

• This command places the output of ZSHOW "*" in a file called infohub-<service>-<infohub
id>[-<publisher | noinfo id>[-<xline id>]-<configuration sequence number>.ZSHOW_DMP_"_
$JOB_"_"_<cntr>.

• If --pidlist is specified, jobexam generates ZSHOW "*" output for only those InfoHub processes that
are mentioned in the pidlist.

To debug an InfoHub from within GT.M, invoke the following entry point in the InfoHub API as an
extrinsic function:

$$jobexam^InfoHub(InfoHubID,"comma,delimited,list,of,PIDs")

Example:

GTM>if $$status^InfoHub(7421,1)
InfoHub ID |InfoHub Name |State
7421 |DEMO |Running
Process listing
 28981 InfoHub /usr/lib/fis-gtm/V6.0-003_x86_64/mumps -direct InfoHub ^InfoHubMain
 7421
 28987 NoInfo /usr/lib/fis-gtm/V6.0-003_x86_64/mumps -direct InfoHub ^InfoHubNoInfo
 7421
 1998603323 1 /home/jdoe/infohub/InfoHub/InfoHub.gld
 28985 Publishers /usr/lib/fis-gtm/V6.0-003_x86_64/mumps -direct InfoHub
 ^InfoHubPublisher
 7421 321 1 /home/jdoe/infohub/InfoHub/InfoHub.gld
 29085 FileLine /usr/lib/fis-gtm/V6.0-003_x86_64/mumps -direct InfoHub
 ^InfoHubFileLine 7421
 321 1 123 /home/jdoe/infohub/InfoHub/InfoHub.gld
GTM>if $$jobexam^InfoHub(7421,"28981,28987")
PID [28981] has been notified
PID [28987] has been notified
GTM>

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX57.txt

$ $gtm_dist/mumps -r ^InfoHub --action=jobexam --pidlist=28981,28987
PID [28981] has been notified
PID [28987] has been notified
$

Both examples place the output of ZSHOW "*" in a file called infohub-<service>-<infohub
id>[-<publisher | noinfo id>[-<xline id>]-<configuration sequence number>.ZSHOW_DMP_"_
$JOB_"_"_<cntr> for PIDs 28981 and 28987.

Chapter 3. InfoHub Tasks Purging an InfoHub

FIS
Page 26, March 13, 2018

r4.5
FIS InfoHub

Important

The ZSHOW "*" output in the JOBEXAMINE files may contain confidential
information gleaned from the monitored components that the process holds in
local variables, and, possibly, in Intrinsic Special Variables (ISVs). If that is the case
in your InfoHub deployment, ensure that the files produced by this command are
appropriately secured.

Purging an InfoHub

To purge InfoHub entries from the shell, execute a command like:

$ $gtm_dist/mumps -run InfoHub --action=purge --before=<time> [--activity]
 [--config] [--info] [--all]

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX59.txt

• An InfoHub must be shutdown before purging.

• --before removes information older than <time>. <time> is of the format "dd-mmm-yyyy
HH:MM:SS". Where dd is the numeric day of the month, mmm is the three letter abbreviation of
the month and yyyy is the four digit year. The hours (HH), minutes (MM) and seconds (SS) are all
optional. In order for the MUMPS to see the quoted string correct users must escape the quotation
marks on the command line.

• --activity removes ^InfoHubActivity (the InfoHub control global) entries.

• --config removes ^InfoHubConfig (the InfoHub configuration global) entries that are no longer used.

• --info removes ^InfoHubInfo (the InfoHub's data) entries.

• --all removes all ^InfoHubActivity, ^InfoHubConfig, and ^InfoHubInfo entries.

To purge InfoHub entries from within GT.M, invoke the following entry point in the InfoHub API as
an extrinsic function where 'TIME' is either a Unix time integer and 'options' is a MUMPS variable with
subscripts "InfoHubActivity", "InfoHubConf", "InfoHubInfo" set to a positive integer value indicating
which globals to purge:

$$purge^InfoHub(InfoHubID,TIME,options)

Example:

$ $gtm_dist/mumps -run ^InfoHub --action=purge --config --before=\"30-OCT-2013
 09:00:00\"

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX61.txt

This example removes all InfoHub configuration entries that were added before October 30, 2013 at 9
am UTC.

Purging an InfoHub Chapter 3. InfoHub Tasks

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 27

GTM>set (opt("InfoHubActivity"),opt("InfoHubConf"),opt("InfoHubInfo"))=1 if
 $$purge^InfoHub(7421,1383138000,opt)

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX62.txt

This example removes all entries related to configuration, InfoHub Activity, and InfoHub data that was
added before 30-OCT-2013 09:00:00 UTC.

This page is intentionally left blank.

FIS InfoHub
Page 28, March 13, 2018

FIS
FIS InfoHub

FIS
FIS InfoHub

FIS InfoHub
March 13, 2018, Page 29

Chapter 4. Configuring an InfoHub

Defining an InfoHub Descriptor

Syntax:

InfoHub:[InfoHubName]:[InfoHubID]

• InfoHubID: A unique 31-bit integer that identifies an InfoHub and does not change once it is defined.

• InfoHub Name: The name of the InfoHub.

• The InfoHub descriptor typically appears as the first non-comment line of the Configuration File.

• If the InfoHub Descriptor is not specified, the configuration process uses the current value of
gtmgbldir to see if the current global directory was previously associated with an InfoHubID, and,
if so, uses the InfoHubID associated with that global directory. If the current global directory path
was never used in association with an InfoHub ID, the configuration fails with an IHHUBDESCREQ
error. If configuration processing encounters more than one InfoHub Descriptor, it produces an
IHONEINFOHUBREQ error. If configuration processing finds the Name missing, it generates an
eight-character Name using random alphanumeric ASCII characters.

• If the descriptor specifies InfoHubName but not InfoHubID, the configuration process uses the
previous value in ^InfoHubConf corresponding to InfoHubName, and if none is defined, (that is, this
is a new InfoHubName), the configuration processing generates a unique random 31-bit positive
integer to use (so that InfoHubID is unique for each InfoHub database), and stores it in the database
in association with the InfoHubName. If configuration processing finds the InfoHubID corresponds
to an InfoHub with no Name, it produces an IHBADSTOREDCONFIG error.

• If the descriptor provides both the InfoHubID and the InfoHubName, and the ID is already in the
configuration, but the specified Name does not match the existing Name, configuration processing
produces an IHNAMEMISMATCH error.

InfoHub Internals

InfoHubID applies to all elements in a configuration file and is the first subscript
for all global variables in the database related to a particular InfoHub, except for the
sub-tree that maps global directories to InfoHubIDs using "GlobalsDirs" as the first
subscript.

Configuration processing stores InfoHub descriptor information in the following
node:

^InfoHubConf(InfoHubID,BeginningSequenceNumber)=[EndingTimeStamp]:
BeginingTimeStamp:InfoHubName:GldFileName:ConfigurationFileName

Chapter 4. Configuring an InfoHub Defining an Include Descriptor

FIS
Page 30, March 13, 2018

r4.5
FIS InfoHub

InfoHub Internals

Processing a Configuration File is done using a GT.M LOCK on ^InfoHubConf with
InfoHubID as a subscript to ensure only one process is handling a Configuration
File for an InfoHub at a given time. If the configuration process detects an another
process is holding a lock on this InfoHubID for more than 30 seconds, it produces an
IHCONFLOCKED error.

The Verbose option for configuration processing generates substantial output that
documents how the processing works. This may be useful for debugging some types
of configuration problems. If you have a rich configuration, consider building it up in
a series of modest increments to make debugging easier.

Example:

InfoHub:SimpleMonitor:11

This example defines an InfoHub called SimpleMonitor. This example is a part of SimpleMonitor.conf
configuration file in the ULFM Reference Implementation.

Defining an Include Descriptor

Include files are fragments of a configuration file that permit modularization of configuration
information. Configuration processing parses them as it reads their Include Descriptors. If configuration
processing encounters a problem reading an Include file, the configuration fails with an IHBADFILE
error. The format of an Include Descriptor is:

Inc:Include:file-path specification

The file path specification can be either an absolute path or a relative path. Relative paths are relative to
the configuration file and not the current working directory.

On a system that has many independent things to monitor, use Include files to make it easy to activate
and deactivate them in a configuration,

Example:

Include:InfoDictConf0.conf

Defining an Env Descriptor

Zero or more Env descriptors can immediately follow the InfoHub descriptor, or start the configuration
definition if the InfoHub descriptor is implicit; and zero or more Env descriptors can immediately
follow any Publisher descriptor. Those in the first location define common environment variables for all
processes used by the InfoHub; those in the second location define common environment variables for
all PipeLine generated processes subject to that Publisher. The syntax of an Env Descriptor is:

Defining an Env Descriptor Chapter 4. Configuring an InfoHub

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 31

Env:EnvVarName[=[Value]][,,,,]

If the configuration processing encounters an Env descriptor that does not follow the InfoHub
descriptor or a Publisher descriptor, it produces an IHENVPLACE error. There are three types of Env
descriptor—one sets values in the environment of InfoHub processes, another with an equal-sign but
no value ensures environment variables are not set (that is, cleared), and a third to invoke a shell script
that manages the target environment. For example:

• The InfoHub may itself use an encrypted database. Blocking its obfuscated password in $gtm_passwd
from other processes (such as PIPE processes in PipeLine descriptors, which do not need to access
its database) is accomplished with an Env:gtmpasswd= descriptor (with an equal-sign, but no value)
after the InfoHub descriptor.

• A Publisher that gathers information from an application deployed on a different version of GT.M
than the InfoHub (or with a global directory that uses relative paths to its database files and/or refers
to environment variables) needs to have the appropriate environment variables set. If the InfoHub
has only read access to the database, ensure that the gtm_tmp and gtm_log environment variables
are appropriately set. Note: gtm_log is not used starting with GT.M V6.0-000. If the environment
variable IHCD exists, the Pipeline sets its working directory to the value of IHCD. For example,
when a global directory uses relative paths: IHCD is set to the base of the relative paths. A set of Env
descriptor lines may look like:

• Env:gtm_dist="/usr/lib/fis-gtm/V5.5-000_x86"

• Env:gtmgbldir="/var/myApp/gtm.gld"

• ...

and provides the needed environment variables after the Publisher descriptor for PipeLine
information gathering by that Publisher.

• If an application provides a script that can be sourced to set up environment variables, Env:/path/
to/script, can be used in lieu of setting them individually. Since this will overwrite the gtmroutines
environment variable, please add the paths for the InfoHub back in using an ENV descriptor for
gtmroutines environment variable. For example,

Env:/path/to/envscript.sh

Env:gtmroutines="$gtmroutines /path/to/infohub /path/to/infohub/pipecommands /path/
toinfohub/plugins /path/to/gtmposixplugin "

• If applications that run in both UTF-8 and M mode are involved, please adjust the gtmroutines
enviroment variable descriptor accordingly. For example, for the applications using M mode:"

Env:gtmroutines="$gtmroutines /path/to/infohub/M(/path/to/infohub) /path/to/infohub/
pipecommands/M(/path/to/infohub/pipecommands) /path/toinfohub/plugins/M(/path/
toinfohub/plugins) /path/to/gtmposixplugin/M(/path/to/gtmposixplugin)"

and for the applications using UTF-8 mode:

Chapter 4. Configuring an InfoHub Defining an Env Descriptor

FIS
Page 32, March 13, 2018

r4.5
FIS InfoHub

Env:gtmroutines="$gtmroutines /path/to/infohub/UTF8(/path/to/infohub) /path/to/infohub/
pipecommands/UTF8(/path/to/infohub/pipecommands) /path/toinfohub/plugins/UTF8(/
path/toinfohub/plugins) /path/to/gtmposixplugin/UTF8(/path/to/gtmposixplugin)"

Attempting to configure an env descriptor without providing a suitable environment produces
an IHBADENV error. Each EnvVarName is a legal POSIX environment variable name, consisting
solely of ASCII letters, digits, and underscores ("_"), of which the first character must not be a
digit; if configuration processing encounters a failure to meet this criterion, it also produces the
IHBADENV error. To allow for permissible, non-graphic values1 of environment variables, and to allow
environment variables to reference environment variables of the InfoHub itself (using the $ZTRNLNM()
function), each Value is treated as a GT.M expr that the InfoHub evaluates before storing the result in
its database.

InfoHub Internals

Configuration processing stores Env descriptor information in the following nodes:

^InfoHubConf(InfoHubID,"EnvSetUp",1,BeginningSequenceNumber)=
[EndingSquenceNumber]:env=[value],..., where the string value of the node
is constructed of shell commands that an InfoHub process uses to manage its
environment.

^InfoHubConf(InfoHubID,"Publishers",PublisherID,BeginningSequenceNumber,
"EnvSetUp")=[EndingSquenceNumber]:env=[value],..., where the string value of the
node is constructed of shell commands that a Publisher process uses to adjust the
environment provided to it by its InfoHub to be appropriate for a PipeLine process.

Expression evaluation (implemented with indirection or XECUTE) also has the
potential for side effects that can affect the InfoHub itself. To protect the InfoHub
itself from side effects of evaluated expressions, the InfoHub processes Env
descriptors in a routine which protects itself by:

• setting $ZROUTINES to the null string to prevent any new routines from being
linked;

• creating a temporary global directory and database with $ZGBLDIR pointing there;

• executing an exclusive NEW; and

• receiving results in $ZTWORMHOLE, it being impossible to modify
$ZTWORMHOLE as a side-effect of an expression. ($ZTWORMHOLE can itself be

1Quoting from IEEE Std 1003.1-2008: The values that the environment variables may be assigned are not restricted except that
they are considered to end with a null byte and the total space used to store the environment and the arguments to the process is
limited to {ARG_MAX} bytes.

Defining an InfoDict Domain Descriptor Chapter 4. Configuring an InfoHub

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 33

safely saved and restored in the calling routine to retain its originally intended use
for triggers.)

Example:

Env:LC_TIME='fr_FR.UTF-8'
Env:LANG='en_US.utf-8'

Defining an InfoDict Domain Descriptor

The InfoDict [Domain] Descriptor can appear anyplace after the InfoHub Descriptor, except
immediately prior to an ENV descriptor, but most logically falls between any InfoHub Environment
Descriptors and the Publisher Descriptors. An InfoDict is an organizational container or domain. While
InfoDicts are the tool for organizing the schema and behavior of the InfoHub, they do so indirectly, and
never appear in the paths of the main storage schema. The syntax of an InfoDict Domain Descriptor is:

InfoDict:InfoDictName:[InfoDictID][:{ParentInfoDictID |
 ParentInfoDictName}]

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX69.txt

• InfoDictID: A unique number that identifies an InfoDict and does not change once it is defined in an
InfoHub.

If there is no InfoDictID, the InfoHub configuration process attempts to map the Name to an existing
InfoDict; if it finds none, it generates a new unique random 31-bit positive integer to use (that is,
InfoDictID is unique for each InfoHubID), and stores the InfoDictID with the InfoDictName. If the
configuration process detects an attempt to map multiple InfoDictIDs to one Name, it produces an
IHDUPDICT error. If the configuration process finds no InfoDict Name or defined ID, it produces
an IHDICTNAMEREQ error. If the configuration process detects an empty InfoDict, it produces an
IHDEADDICT error.

• InfoDictName: The Name of the InfoDict. For example, "Servers", "Databases", "Regions", and so on.

• ParentInfoDictID or ParentInfoDictName: The InfoDictID or Name of a parent node. For example,
"Servers" might be the name of the parent for "Databases".

ParentInfoDictID indicates there is an additional InfoDict domain that contains an item or items
which fall above the items in this InfoDict domain in a hierarchy. If the configuration process
detects there is no definition for the specified parent Name, it produces an IHPARENTUNDEF error.
If the configuration process detects a circular path in InfoDict parent references, it produces an
IHCIRCDICT error.

InfoHub Internals

Configuration processing stores InfoDict domain information in the following nodes:

^InfoHubConf(InfoHubID,"InfoDicts",InfoDictID,BeginningSequenceNumber)=
EndingSequenceNumber]:InfoDictName

Chapter 4. Configuring an InfoHub Defining an InfoDictItem Descriptor

FIS
Page 34, March 13, 2018

r4.5
FIS InfoHub

^InfoHubConf(InfoHubID,"InfoDicts",InfoDictID,BeginningSequenceNumber,0,
ParentInfoDictID)=[EndingSequenceNumber]:

^InfoHubConf(InfoHubID,"InfoDicts",InfoDictID,BeginningSequenceNumber,
"Children",ChildInfoDictID): this node is only maintained for the current
configuration of this InfoHub.

Example:

InfoDict:GenericDict::SystemDict
InfoDictItem:GenericDict:OpLog:1137
InfoDictItem:GenericDict:AuthLog:1139

This example defines an InfoDict Domain called GenericDict and places two InfoDict Items—OpLog
and AuthLog—under it. This example is a part of SimpleMonitor.conf configuration file in the ULFM
Reference Implementation.

Defining an InfoDictItem Descriptor

The InfoDictItem Descriptor can appear anywhere after the InfoHub Descriptor, except before an Env
Descriptor, but most logically falls among or after any InfoDict [domain] Descriptors and before the
Publisher Descriptors. InfoDictItems form the set of nodes the InfoHub can store. While you can create
them explicitly, the configuration process can implicitly create InfoDictItems corresponding to some
other InfoHub components (Publishers, xLines, Subscribers). The syntax of an InfoDictItem Descriptor
is:

InfoDictItem:{InfoDictID |
 InfoDictName}:ItemName:[InfoDictItemID]:[Label]:[Type][;ItemDescription]

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX71.txt

• InfoDictId or InfoDictName: The name or ID of the parent InfoDict Domain.

• ItemName: A string value that identifies the InfoDict Item. An attempt to explicitly or implicitly
configure an InfoDictItem without a Name produces an IHNAMEREQ error.

• InfoDictItemID: A unique number that identifies an InfoDict Item and does not change once it is
defined in an InfoHub.

If InfoDictItemID is not specified, the configuration gets the InfoDictItemID from the specified
InfoDict domain. If the specified domain has no definition for the Name, the InfoHub configuration
process generates a new unique random 31-bit positive integer to use (that is, InfoDictID is
unique for each InfoDictID), and stores it with the InfoDictItem information. If the configuration
process detects there is no Name or ID for the InfoDict, it produces an IHIDORNAMEREQ error.
Note: the SNMP sub-agent provided with the GT.M monitoring Reference Implementation uses
InfoDictItemIDs as indices in the OID index for each Value.

If InfoDictItemID is specified, configuration processing verifies before configuration completion
that the specified InfoDict domain maps the specified InfoDictItemName; if it detects there is no

Defining an InfoDictItem Descriptor Chapter 4. Configuring an InfoHub

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 35

Name or ID for a InfoDictItem, it produces an IHIDORNAMEREQ error; if it detects an attempt
to map multiple InfoDictItemIDs to one Name, it produces an IHDUPITEM error. If configuration
processing detects InfoDictItem Name and ID combinations supplied by multiple descriptors conflict,
it produces an IHIDMISMATCH error; note that Publisher, Subscriber and xLine descrptors may
implicitly define InfoDictItems. If configuration processing detects the configuration uses the same
ID from two InfoDicts such that both fall on the same path at the same path level, it produces an
IHPATHCONFLICT error.

• Label: A alternate name for the InfoDict Item. If not specified, InfoHub uses InfoDictItemName for
the Label.

• Type: Indicates the type of value. There are four types of values—String, NONE, and META and
user-defined. String denotes any String value and is the default. NONE indicates that the Item
is not a leaf node, that is, it has sub-items but no value of its own. META means that the item
triggers a Subscription for some set of other nodes but has no data of its own. META nodes act to
aggregate multiple conditions into a single Subscription. Attempting to define a META node without
a Subscription produces an IHMETANOSUB error. Attempting to use a NoInfo Subscription on a
META node produces an IHMETANOINFO error. Attempting to use a Subscription on a NONE node
produces an IHTNONENOSUB error. User-defined types enable a Reporter Adaptor to appropriately
format and present information in the target environment it feeds. For example, the Reference
Implementation SNMP sub-agent adapter, uses Label and Type configuration information to generate
the MIB for InfoHub data.

• ItemDescription: Description of the Item, typically for documentation purposes.

Note

When the same InfoHub has multiple adapters, the user-defined Types must be
a superset of the Types required by all the adapters, and the transforms for each
adapter must deal appropriately with all Types, including transforming those outside
their set into those within their set.

InfoHub Internals

Configuration processing stores InfoDict item information in the following nodes:

^InfoHubConf(InfoHubID,"InfoDicts",InfoDictID,BeginningSequenceNumber,ItemID)=[EndingSequenceNumber]:ItemName;Label:
[Type]:[ItemDescription]

^InfoHubConf(InfoHubID,"InfoDicts","Dnames",InfoDictID,ItemName)=ItemID

^InfoHubConf(InfoHubID,"InfoDicts","Dnames",InfoDictName)=InfoDictID

^InfoHubConf(InfoHubID,BeginningSequenceNumber,"Paths",int1...)=ItemName;Label:
[Type][:ItemDescription]

Chapter 4. Configuring an InfoHub Defining a Publisher Descriptor

FIS
Page 36, March 13, 2018

r4.5
FIS InfoHub

Example:

InfoDict:UpTime::UpTimeDict
InfoDictItem:UpTime:Days:3030400::Integer:Days since last reboot
InfoDictItem:UpTime:Load01:3030401::Float:One minute load average
InfoDictItem:UpTime:Load05:3030405::Float:Five minute load average
InfoDictItem:UpTime:Load15:3030415::Float:Fifteen minute load average

This example defines an InfoDict Domain called UpTime and 4 InfoDict Items called Days, Load01,
Load05, and Load15. This example is a part of SimpleMonitor.conf configuration file in the ULFM
Reference Implementation.

Defining a Publisher Descriptor

Information stored in an InfoHub is associated with information Publishers, each of which is specified
with a Publisher descriptor. Publisher descriptors follow the InfoHub descriptor and any of its
associated Environment Descriptors. While the meaning of "Publisher" is a function of a configuration
and its conventions in your organization, it is appropriate for one Publisher to manage the information
gathering and dissemination for one environment. This provides the PreExpr, PostExpr, and InfoExpr
expressions of FileLine and PipeLine processes with an isolated environment where, if appropriate, they
can communicate and cooperate with each other.

InfoHub JOBs a process for each Publisher. This process in turn JOBs processes for each FileLine
or PipeLine descriptor associated with the Publisher. The Publisher process may optionally create a
temporary directory before launching any processes. Within that temporary directory, it creates a
global directory that maps to an unjournaled database in that temporary directory. It logs the name of
the temporary directory to the InfoHub database.

The Publisher JOBs the FileLine or PipeLine processes with the following JOB Processparameters:

• DEFAULT=<tempPWD>: points to the temporary directory.

• ERROR=<routine_name.infohub> and OUTPUT=<routine_name.infohub>: Point to files in the
temporary directory. The InfoHub JOB framework uses VIEW "JOBPID":1 to ensure that the stderr
and stdout of one child processes do not overwrite those of another.

• GBLDIR=</path/to/tempPWD/Publisher.gld>: points to the global directory in the temporary directory.

The syntax of a Publisher Descriptor is:

Publisher:{InfoDictID|InfoDictName}:[PublisherName]:[PublisherID]:[APIDir]:[TempPWD]:
[TempDBAlloc]:[TempDBExtend]

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX73.txt

• InfoDictID or InfoDictName: The InfoDict ID or Name for the InfoDict holding the Publisher
definition.

Defining a Publisher Descriptor Chapter 4. Configuring an InfoHub

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 37

• Publisher Name: The Name of the Publisher.

• Publisher ID: A unique 31 bit positive integer.

The descriptor must specify one, or both, of the PublisherName and PublisherID; otherwise, the
configuration processing produces an IHIDORNAMEREQ error. When the descriptor specifies both
the Name and ID and there is no corresponding InfoDict entry, configuration processing implicitly
creates an InfoDict entry.

If the descriptor contains only PublisherName, the configuration gets PublisherID from the specified
InfoDict domain. If the specified domain has no definition for the Name, InfoHub uses the last
PublisherID in the database associated with PublisherName. If none exists (that is, this is a new
PublisherName), the InfoHub generates a new unique random 31-bit positive integer to use (that is,
PublisherID is unique for each InfoHubID), and stores the PublisherID in the database in association
with the PublisherName.

If PublisherID is specified, the configuration process verifies before configuration completion
that the specified InfoDict domain maps a PublisherName; if the configuration detects there is no
Name for a PublisherID, it produces an IHPUBLISHERREQ error; if it detects an attempt to map
multiple PublisherIDs to one Name, it produces an IHDUPPUBLISHER error. Note: the Reference
Implementation SNMP sub-agent provided with the InfoHub uses PublisherID as an index in the OID
for each Publisher.

• APIdir: A directory that holds routines with functions to process information for storage (see *Expr
references below).

If APIDir for the Publisher, is not null, the Publisher sets $gtmroutines to the value of APIDir. If
APIDirs is null, the Publisher process does not modify $gtmroutines. The FileLine or PipeLine inherit
$gtmroutines.

• TempPWD: When starting, the InfoHub creates the TempPWD directory that the information
gathering XLine processes can use for cooperation and temporary storage. This temporary private
area does not persist from one invocation of InfoHub to another. The InfoHub deletes these private
areas on startup.

• TempDBAllocate: The initial allocation of the database in TempPWD with a predetermined block
size of 4KiB. If not specified, it defaults to the GT.M default for new databases. A zero value of
TmpDBAlocate specifies no need to create a database. An attempt to configure an non-integer or out-
of range allocation produces a IHBADALLOC error.

• TempDBExtend: The Extension Count of the database created in TempPWD. If not specified,
it defaults to the GT.M default for new databases. A zero value of TmpDBExtend prevents the
temporary database from extending. An attempt to configure an non-integer or out-of range
extension produces a IHBADEXT error.

InfoHub Internals

The entryref used to start the FileLine and PipeLine processes includes a parameter
for the Publisher process to pass its own global directory, which the FileLine and

Chapter 4. Configuring an InfoHub Defining a FileLine Descriptor

FIS
Page 38, March 13, 2018

r4.5
FIS InfoHub

PipeLine processes use to record gathered information in the InfoHub and to
communicate with the Publisher.

After launching FileLine and PipeLine processes, the Publisher schedules itself using
HANG commands, periodically waking up to verify that its FileLine and PipeLine
processes are active. During the HANG, it requires an interrupt to awaken it.

Configuration processing stores Publisher specification in the following nodes:

^InfoHubConf(InfoHubID,"Publishers",PublisherID,BeginningSequenceNumber)
=EndingSequenceNumber]:InfoDictID:[APIDir]:[TmpPWD]:[TmpDBAlloc]:
[TmpDBExtend]

Example:

Publisher:SystemDict:System:::publishers/ihsyslog:1000:1000

This example configures a Publisher called System. This example is a part of the SimpleMonitor.conf
configuration file in the ULFM Reference Implementation.

Defining a FileLine Descriptor

A FileLine descriptor defines aspects of monitoring a text file. For each FileLine entry in the
configuration, the Publisher master process JOBs a process that reads the monitored file line by line,
executing a GT.M expression (an extrinsic function call) for each line read in order to gather relevant
information. The FileLine process OPENs the monitored file with the FOLLOW deviceparameter and
then READs individual lines (the GT.M equivalent of tail -f).

The syntax of a FileLine descriptor is

FileLine:{InfoDictID | InfoDictName}:[FileLineName]:[FileLineID]:{PublisherID |
 PublisherName}:Filename:[CheckCycle]:[Timeout]:[PieceSeparator]:[PreExpr]:[InfoExpr]:
[PostExpr]

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX75.txt

• InfoDictID or InfoDictName: The ID or name of the InfoDict domain that maps FileLineID to
FileLineName.

• FileLineName: The name of the FileLine.

If FileLineName is specified, the configuration gets the FileLineID from the specified InfoDict
domain. If the specified domain has no definition for FileLineID, the InfoHub configuration process
generates the FileLineID by adding one or two to the last ID used in this InfoDict domain to obtain
an odd-numbered entry. Note that the SNMP sub-agent provided with the InfoHub Reference
Implementation uses FileLineID as an index in the OIDs for each FileLine.

• FileLineID: The ID of the FileLine.

Defining a FileLine Descriptor Chapter 4. Configuring an InfoHub

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 39

If FileLineID is specified, the configuration process verifies before configuration completion that the
InfoDict domain maps that FileLineID to a FileLineName; if the configuration detects that there is no
FileLineName or FileLineID, it produces an IHIDORNAMEREQ error.

The descriptor must specify one, or both, of FileLineName and FileLineID. When the descriptor
specifies both the name and ID and there is no corresponding InfoDict entry, configuration
processing implicitly creates an InfoDict entry. If the configuration file specifies the same ID for
more than one FileLine associated with a Publisher, the configuration processing produces an
IHDUPFILELINE error.

• PublisherID or PublisherName: The ID or name of the Publisher associated with the FileLine.

• Filename: The absolute path to the monitored file. If configuration processing determines the path is
not absolute, it produces an IHABSPATHREQ error.

• CheckCycle:The period of time in seconds at which a FileLine process checks for a newer version of
Filename.

Because a file can be renamed and replaced while the InfoHub has it open (for example, under the
control of an application such as logrotate), if CheckCycle is specified, FileLine process checks every
CheckCycle seconds whether the name of the file it has open still matches Filename; if not, it closes
the file it has open, and opens the current file Filename. A value of 0 (the default) means InfoHub
should not check for a newer file. If the configuration processing finds a non-numeric cycle value, it
produces an IHBADCYCLE error.

• Timeout: The maximum amount of time, in seconds, that a FileLine process should wait for additional
input in Filename before it shuts down.

When the FileLine process is asked to terminate, it issues a USE of the file with NOFOLLOW
and proceeds with timed READs for the duration of Timeout seconds. If FileLine receives an
end-of-file prior to that time, it does not wait for additional input. If not specified, Timeout
defaults to one second. If the configuration processing finds a non-numeric timeout, it produces an
IHBADTIMEOUT error.

• PieceSeparator: A single character (which can span several bytes if the InfoHub is operating in UTF-8
mode) that specifies a delimiter used to separate subscripts and information returned by PreExpr,
PostExpr, and InfoExpr.

If PieceSeparator is not specified, it defaults to a colon (":"). Since colons separate syntactic elements
of the FileLine descriptor, the only way to specify a colon as the PieceSeparator is to default it.
The PieceSeparator can also be the case-insensitive keyword "VAR" which indicates that the first
character of the expression returned by the gleaner has to be removed and used as a delimiter by
the Reporting process. If configuration processing finds that the specified PieceSeparator is not an
empty-string, a single character, the keyword "VAR", or a valid $CHAR() expression, it produces an
IHBADDPSEP error.

• PreExpr: A GT.M extrinsic function call, which, if specified, automatically executes before FileLine
starts to process Filename, and for every subsequent Filename rotation. If a FileLine gleaner needs

Chapter 4. Configuring an InfoHub Defining a FileLine Descriptor

FIS
Page 40, March 13, 2018

r4.5
FIS InfoHub

certain values initialized only once, it must differentiate between the first and subsequent invocations
of PreExpr. Like the other *Expr functions, it can return zero or more PieceSeparator-delimited
values, as appropriate, for storage in the InfoHub database. If not specified, PreExpr defaults to an
empty string.

• InfoExpr: A GT.M extrinsic function call that returns zero to many (typically one) PieceSeparator-
delimited sets of "key<PieceSeperator>value" expressions for each line of the monitored file. Note
that a key should be the numeric ID of a defined InfoDictItem. The local variable %l is available to
InfoExpr with the current line read from Filename. A typical InfoDictItem might correspond to a
particular message or message type logged in the operator log. If not specified, InfoExpr defaults to
an empty string.

• PostExpr: A GT.M extrinsic function call which, if specified, automatically executes at the end of
processing Filename, either when a new version of Filename is detected, or at InfoHub shutdown.
If a FileLine gleaner needs certain values summarized only once, it must differentiate between the
last and prior invocations of PostExpr. Like the other *Expr functions, it can return zero or more
PieceSeparator-delimited values, as appropriate, for storage in the InfoHub database. If not specified,
PostExpr defaults to an empty string.

If PreExpr, InfoExpr, or PostExpr return a value which is not an empty string or a string in the
format below, the FileLine process terminates. In order for Subscriptions to detect an error, the
Expr should return a "key<PieceSeparator>value" pair for the error. The normal return is an empty
string (meaning no information stored), or one or more "key : value" pairs to store, in the form of
one or more comma-delimited positive integer keys, followed by the value to be stored, separated
by PieceSeparator. Multiple pairs could be (as an implementation detail) separated by pairs of
PieceSeparators. Neither the key nor the value can contain a PieceSeparator.

If the Configuration File does not specify at least one of PreExpr, InfoExpr, and PostExpr,
configuration processing produces an IHSOMEEXPRREQ error.

InfoHub Internals

On starting up, a FileLine process executes its PreExpr, gathering any information
provided, and logging an error if the data does not match the expected format, as
described earlier. In the event that PreExpr does not return an error, the FileLine
process OPENs the file using the FOLLOW deviceparameter, and sits on an untimed
READ of the file. Every line read gets processed by InfoExpr, and the returned data
placed into the InfoHub database. Triggers on ^InfoHubInfo provide asynchronous
notification to Subscribers; this eliminates polling to provide the most efficient
processing (all other actions, including commands to shutdown, are sent via
asynchronous interrupt-driven messages). In response to a shutdown command, the
FileLine process executes its PostExpr, which may provide summary information, as
appropriate, before shutting down.

GT.M V6.0-002 is the minimum compatible version because InfoHub uses the
FOLLOW deviceparameter functionality which was first introduced in V6.0-002.
For information on installing GT.M, refer to "Installing GT.M" chapter of the UNIX
Administration and Operations Guide.

Defining a PipeLine Descriptor Chapter 4. Configuring an InfoHub

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 41

Configuration stores FileLine specifications in the following node:

^InfoHubConfInfoHubID,"Publishers",PublisherID,BeginningSequenceNumber,
FileLineID)= EndingSequenceNumber]:FileName:InfoDictID:FileLineName:
CheckCycle:Timeout:PieceSeparator]:[PreExpr]:[InfoExpr]:[PostExpr]

PreExpr, InfoExpr, and PostExpr always execute with $ZGBLDIR pointing to the
global directory in the temporary directory. The FileLine process logs gathered
information in the InfoHub database using an extended reference.

Example:

FileLine:GenericDict:OpLog::System:/var/log/messages:2:1:
$char(30):PreExpr^LogFileGleaner:InfoExpr^LogFileGleaner:PostExpr^LogFileGleaner

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX76.txt

FileLine:GenericDict:AuthLog::System:/var/log/auth.log:2:1:
$char(30):PreExpr^LogFileGleaner:InfoExpr^LogFileGleaner:PostExpr^LogFileGleaner

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX77.txt

This example configures two FileLine Gleaners, OpLog and AuthLog, as presented in the
SimpleMonitor.conf configuration file in the ULFM Reference Implementation. The referenced PreExpr,
InfoExpr, and PostExpr functions are implemented in "LogFileGleaner.m" (also available in the ULFM
Reference Implementation), which provides a simple implementation of a gleaner that processes
information from the system log.

Defining a PipeLine Descriptor

A PipeLine descriptor defines the aspects of monitoring output from a process. The monitored process
can be a GT.M (any version) process or any other UNIX process. The Publisher master process JOBs a
PipeLine process which reads the stdout and/or stderr of the monitored process line by line, executing a
GT.M expression (an extrinsic function call) for each line read in order to gather and format the per-line
information. As the name indicates, a PipeLine process uses a UNIX pipe to monitor a process.

The syntax of a PipeLine Descriptor is:

PipeLine:{InfoDictID | InfoDictName}:[PipeLineName]:[PipeLineID]:{PublisherID |
 PublisherName}:PipeCmd:[PipeCycle]:[Timeout]:[PieceSeparator]:[PreExpr]:[InfoExpr]:
[PostExpr]:

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX78.txt

• InfoDictID or InfoDictName: The InfoDict ID or Name of the InfoDict holding the PipeLine definition.

• PipeLineName: The name of the PipeLine.

Chapter 4. Configuring an InfoHub Defining a PipeLine Descriptor

FIS
Page 42, March 13, 2018

r4.5
FIS InfoHub

• PipeLineID:The Publisher master process creates a GT.M PIPE device, which sets up a UNIX pipe, and
uses untimed READ commands to accept stdout and stderr from the process created on the pipe.

The descriptor must specify one, or both, of the PipeLineName and PipeLineID. When the descriptor
specifies both the Name and ID and there is no corresponding InfoDict entry, configuration
processing implicitly creates an InfoDict entry.

If PipeLineName is specified, the configuration gets the PipeLineID from the specified InfoDict
domain. If the specified domain has no definition for the Name, the InfoHub configuration process
generates the PipeLineID by adding one or two to the last ID used in this InfoDict domain in order to
get the next odd (for stdout) or even (for stderr) integer. Even when a PipeLine descriptor specifies
gathering information only from one or the other, the InfoHub reserves the block of two numbers
starting with the PipeLineID.

If PipeLineID is specified, the configuration process verifies before configuration completion that the
specified InfoDict domain maps a PipeLineName; if the configuration detects there is no Name or
ID for a PipeLine, it produces an IHIDORNAMEREQ error; if it detects an attempt to map multiple
PipeLineIDs to one Name, it produces an IHDUPPIPELINE error.

• PipeCmd: PipeCmd is shell (/bin/sh) command to launch the process which feeds results to the PIPE
device. The default environment of the process includes changes specified by Env descriptors for the
InfoHub as well as for the Publisher. If it is just a filename and not a path, $PATH in the environment
of the Publisher must include a path to the appropriate executable filename. If it includes a path to
the filename, it must be an absolute path (since PipeCmd should not count on the working directory
of InfoHub). Given this, InfoHub relies on environment variables from the environment of Publisher.

Because PipeCmd can terminate while the InfoHub has it open, PipeCycle specifies what InfoHub
should do if and when it happens:

• If the configuration processing finds a non-numeric cycle, it produces an IHBADCYCLE error.

• A value of -1 tells the InfoHub not to restart the process, making PipeCmd a one-off command.

• The default value of 0 tells the InfoHub to restart the process as soon as the InfoHub detects that it
has terminated. If so configured, a restarted process specified to have a separate stderr process gets
a new stderr process, to avoid inadvertent contamination.

• A value greater than 0 tells the InfoHub to restart the process if and when it terminates, but not
before at least the number of seconds specified by PipeCycle measured since the previous time it
was started.

• TimeOut: When the PipeLine process is asked to terminate, Timeout is the maximum amount of
time that PipeLine process should wait for additional information from the PipeCmd process before
it shuts down. If PipeLine determines that PipeCmd process has shut down, it need not wait for
additional input. If not specified, Timeout defaults to one second. If the configuration processing
finds a non-numeric timeout, it produces an IHBADTIMEOUT error.

• PieceSeperator: PieceSeparator is a single character (which can be a multi-byte character if the
InfoHub is operating in UTF-8 mode) that specifies a separator used to separate subscripts and

Defining a PipeLine Descriptor Chapter 4. Configuring an InfoHub

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 43

information returned by PreExpr, PostExpr, InfoExprOut and InfoExprErr. If PieceSeparator is not
specified it defaults to the colon (":"). Since the colon separates syntactic elements of the PipeLine
descriptor, the only way to specify a colon as the PieceSeparator is to default it. The PieceSeparator
can also be the case-insensitive keyword "var" which specifies that the first character of the
expression returned by the gleaner routine is the PieceSeparator for the Reporting process to remove
and use. If the configuration processing finds the specified PieceSeparator is not any of: the empty-
string, a single character or the keyword "VAR", it produces an IHBADDPSEP error.

• PreExpr:A GT.M extrinsic function call, which, if specified, automatically executes before FileLine
starts to process the input on its PIPE or FIFO initially. If a PipeLine processor needs to initialize
some values that it should only initialize once, it must differentiate between the first and subsequent
invocations. Like the other *Expr functions it can return zero or more PieceSeparator delimited
values as appropriate for storage in the InfoHub database. If not specified, PreExpr defaults to the
empty string.

• InfoExpr: A GT.M extrinsic function call that returns zero to many (typically one) PieceSeparator
delimited sets of "key<PieceSeperator>value" for each line of the monitored input read. Note that key
should be the numeric ID of a defined InfoDict Item. The local variable %l is available to InfoExpr
with the current line read from the PIPE or FIFO. If not specified, InfoExpr defaults to an empty
string.

• PostExpr: A GT.M extrinsic function call which, if specified, automatically executes at the end of
processing input from the PIPE or FIFO, either when a version of PipeCmd is terminates, or at
InfoHub shutdown. If a PipeLine processor needs to summarize some values that it should only
summarize once, it must differentiate between the last and prior invocations. If not specified,
PostExpr defaults to the empty string. Like the other *Expr functions it can return zero or more
PieceSeparator delimited values as appropriate for storage in the InfoHub database.

If PreExpr, InfoExpr, or PostExpr return a value which is not a empty string or a string in the format
below, the PipeLine process terminates. In order for Subscriptions to detect an error the Expr should
return a "key:value" pair for the error. The normal return is an empty string (meaning no information
stored), or one or more "key : value" pairs to store, in the form of one or more positive integer
keys, separated by PieceSeparator, followed by the value to be stored. Multiple pairs could be (as
an implementation detail) separated by pairs of PieceSeparators. Neither the key nor the value can
contain a PieceSeparator.

If the Configuration File does not specify at least one of PreExpr, InfoExpr, and PostExpr,
configuration processing produces an IHSOMEEXPRREQ error.

InfoHub Internals

On startup, each process for a PipeLine descriptor executes its PreExpr, gathering
any information provided and logging an error if the data does not match the
expected format, as described earlier. In the event PreExpr does not return an error,
the PipeLine process OPENs the PipeCmd using a PIPE device and /bin/sh. The
deviceparameters for the GT.M OPEN command used to start PipeCmd includes /
bin/sh syntax set the environment appropriately. PipeCmd starts with environment
variable changes as specified by ^InfoHubConf(InfoHubID,"Publishers",PublisherID,

Chapter 4. Configuring an InfoHub Defining a Subscriber Descriptor

FIS
Page 44, March 13, 2018

r4.5
FIS InfoHub

BeginningSequenceNumber,"EnvSetUp") for its Publisher as well as those specified
in ^InfoHubConf(InfoHubID,"EnvSetUp",BeginningSequenceNumber) for descriptors
applicable to the InfoHub itself (that is, applicable to all Publishers).

In the event the PipeCmd process terminates, the PipeLine process executes
PostExpr, and terminates if PostExpr returns an error. Then, if PipeCycle is -1, the
PipeLine process logs in the InfoHub database the fact that it is terminating and
terminates. If PipeCycle is non-negative, the PipeLine process executes PreExpr, and
if the return value is zero, starts a new invocation of PipeCmd.

Configuration processing stores PipeLine specifications in the following node:

^InfoHubConf(InfoHubID,"Publishers",PublisherID,BeginningSequenceNumber,
PipeLineID)=[EndingSequenceNumber]:PipeCycle:InfoDictID:PipeLineName:
PipeCmd:Timeout:[PieceSeparator]:[PreExpr]:[InfoExpr]:[PostExpr]

Example:

PipeLine:UpTimeDict:Uptime::System:/usr/bin/uptime:15:2:
$char(30):PreExpr^UptimeGleaner:InfoExpr^UptimeGleaner:PostExpr^UptimeGleaner

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX79.txt

This example configures a PipeLine gleaner for the uptime command. This example is a part of
SimpleMonitor.conf in the ULFM Reference Implementation.

Defining a Subscriber Descriptor

While the InfoHub database is available to any reader for asynchronous access without a need to be
identified in the Configuration File, an InfoHub can also notify a reader when InfoHub data has a
characteristic specified in a Subscription (see "Defining a Subscription"). For example, the Reference
Implementation SNMP sub-agent uses this technique to generate SNMP traps without an asynchronous
external request or polling. While most of the InfoHub works independently of any adapters, in order to
perform asynchronous alerts or notifications, it requires some context for the Subscriber adapters. The
syntax of the Subscriber Descriptor is:

Subscriber:{InfoDictID | InfoDictName}:[SubscriberName]:[SubscriberID]

• InfoDictID or InfoDictName: The InfoDict ID or Name of the InfoDict holding the Subscriber
definition.

• SubscriberName: The name of the Subscriber.

• SubscriberID: A unique 31-bit positive integer that uniquely identifies a subscriber.

The descriptor may specify neither, one, or both, of SubscriberName and SubscriberID. When
the descriptor specifies both the Name and ID and there is no corresponding InfoDict entry,
configuration processing implicitly creates an InfoDict entry. If the Configuration File specifies the

Defining a Subscription Descriptor Chapter 4. Configuring an InfoHub

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 45

same ID for more than one Subscriber associated with a Publisher, the configuration processing
produces an IHDUPSUBSCRBR error. If configuration processing finds the Name missing, it
generates an eight-character Name using random alphanumeric ASCII characters.

If SubscriberName is specified, the configuration gets SubscriberID from the specified InfoDict
domain. If the specified domain has no definition for the Name, the InfoHub configuration process
generates a new unique random 31-bit positive integer to use (that is, SubscriberID is unique for each
InfoHubID), and stores it in the InfoDict domain in association with the SubscriberName. To use the
default notification mechanism, an adapter process capable of reporting alerts must register its PID in
^InfoHubActivity using its SubscriberID.

InfoHub Internals

When a Subscription detects an alert condition it queues the item (with a timestamp)
under ^InfoHubInfo(InfoHubId,"Alerts") and INTRPTs all Subscribers attached to
that Subscription. The Subscriber adapter process handles the queued alert item
and KILLs its descendant node at its Subscriber ID; if there are no more Subscriber
descendant nodes, it KILLs the queued item.

Configuration stores Subscriber specifications in the following node:

^InfoHubConf(InfoHubID,"Subscribers",SubscriberID,BeginningSequenceNumber)=
[EndingSequenceNumber]:InfoDictID:SubscriberName

Example:

Subscriber:Reporters:SNMP:404
Subscriber:Reporters:NAGIOS:503

This example configures two subscribers–SNMP and NAGIOS. This example is a part of
SimpleMonitor.conf in the ULFM Reference Implementation.

Defining a Subscription Descriptor

InfoHub implements alerts and notifications with GT.M triggers on ^InfoHubInfo nodes. With one
exception, a Subscription Descriptor essentially defines a trigger. A Subscription Descriptor specifying
a condition of "Noinfo" differs slightly, in that it starts a Noinfo process which periodically checks
for data in ^InfoHubInfo and if it finds none, places a "key:value" pair in the alert queue and sends an
INTRPT to its Subscriber process(es). The syntax of the Subscriber Descriptor is:

Subscription:{InfoDictID | InfoDictName}:[SubscriptionName]: [SubscriptionID]:{InfoDictID
 | InfoDictName}:{InfoDictItemID | InfoDictItemName}:Condition:[Value]:[Period]:[entryref]:
[SubscriberID[,...]]:[PublisherID[,...]]

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX82.txt

• InfoDictID or InfoDictName: The first InfoDict ID or Name identifies the InfoDict holding the defined
Subscription.

Chapter 4. Configuring an InfoHub Defining a Subscription Descriptor

FIS
Page 46, March 13, 2018

r4.5
FIS InfoHub

The first InfoDictName or InfoDictID specifies the domain which maps SubscriptionID to
SubscriptionName.

• SubscriptionName: The name of the Subscription.

• SubscriptionID: A unique 31-bit positive integer that uniquely identifies a subscription.

The descriptor must specify one, or both, of the SubscriptionName and SubscriptionID. When
the descriptor specifies both the Name and ID and there is no corresponding InfoDict entry,
configuration processing implicitly creates an InfoDict entry. If the Configuration File specifies the
same ID for more than one Subscription associated with a Publisher, the configuration processing
produces an IHDUPSUBSCRPTN error.

If SubscriptionName is specified, the configuration gets SubscriptionID from the first specified
InfoDict domain. if the specified domain has no definition for the Name, the InfoHub configuration
process generates a new unique random 31-bit positive integer to use (that is, SubscriptionID
is unique for each InfoHubID), and stores it in the InfoDict domain in association with the
SubscriptionName.

If the configuration detects there is no Name or ID for a Subscription, it produces an
IHIDORNAMEREQ error. Attempting to configure a subscription that has a corresponding
InfoDictItem with no relationship to a Publisher produces an IHSUBSCRPTNNOPATH error.

The SubscriptionID can be used by the subscriber to determine the condition that caused the alert to
fire. This provides context for the item reference and value contained in the alert.

• InfoDictID or InfoDictName: The second InfoDict ID or Name identifies the InfoDict holding the
defined InfoDictItem to "watch."

• InfoDictItemName or InfoDictItemID specifies the item that the Subscription must "watch."
If the configuration detects there is no valid Name or ID for an InfoDictItem, it produces an
IHIDORNAMEREQ error. Attempting to use a NoInfo Subscription on a META node produces
an IHMETANOINFO error. Attempting to use a Subscription on a NONE node produces an
IHTNONENOSUB error.

• Condition: Condition specifies a GT.M binary relational operator excluding concatenation and non-
relational arithmetic operators or the (case-insensitive) text: "Noinfo" which configures detection of
a period during which the specified item receives no new data. If configuration processing does not
recognize a valid Condition, it produces an IHSUBCONDINV error. Pattern conditions have a patcode
immediately following the pattern operator (?) in the condition field, and nothing in the value field. If
configuration processing can't compile the patcode, it produces a IHSUBCONDINV error.

• Value: Value specifies a GT.M literal which the Subscriber relates to the Item; it is required except
for the "Noinfo" or pattern conditions; if the configuration processing detects there is no valid
literal, it produces an IHSUBVALREQLIT error; if it detects a value for a "Noinfo" condition, it
produces an IHNOINFONOVAL error; if it detects a value for a pattern (?) condition, it produces an
IHPATNOVAL error; if the comparison is not value, it produces an IHSUBSPROB error.

Defining a Subscription Descriptor Chapter 4. Configuring an InfoHub

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 47

• Period: Period specifies a time in seconds and indicates checking over the Period for changes
in the Item the value using a condition containing a "less-than" ("<") or "greater-than" (">"),
effectively supporting rate checking. If the configuration detects a non-numeric rate, it produces
an IHSUBINVPER error; if it detects a period with a condition that does not contain "<" or ">", it
produces an IHBADCOND4PER error. Configuration processing accepts an empty period for all
conditions except "Noinfo", for which configuration processing produces an IHNOINFOINVPER error
for an invalid period.

• Entryref: Entryref signifies a GT.M entryref specifying the action for the Subscription to take.
By default, the InfoHub uses a routine called ^InfoHubNotify for Values without Periods and
^InfoHubRate(Value,Period) for Values with Periods. Any user defined entryref must be available in
the $ZROUTINES of the Publisher process.

• The optional SubscriberIDs are useful when there are multiple adapters with differing Subscriptions;
in that case by default, a Subscription applies to all Subscribers. If configuration processing detects a
SubscriberID that is not defined, it produces an IHBADSUBSCRIBER error.

• The optional PublisherIDs are useful when there are multiple Publishers with differing Subscriptions;
in that case by default, a Subscription applies to all Publishers. If configuration processing detects a
PublisherID that is not defined, it produces an IHBADPUBLISHER error.

• Note that to easily subscribe to an error from a FileLine or PipeLine process that FileLine or PipeLine
process must set an appropriate node, defined in the InfoDict, which, in case of an error, those
processes update uniquely. Attempting to configure an InfoHub with a Subscription that does not
define a usable trigger produces an IHTRIGPROB error.

InfoHub Internals

InfoHub implements other alerts with GT.M triggers on InfoHub nodes. A
Subscription Descriptor other than "Noinfo" defines a trigger.

The technique of using GT.M triggers to implement Subscriptions does not work for
NoInfo Subscriptions because triggers are initiated by a database update, whereas
NoInfo is initiated by the absence of an update. To manage polling impact, each
NoInfo subscription is implemented with a process that executes a Hang for the
Period at the end of which it might need to queue an alert and INTRPT one or
more Subscribers. When the Hang expires, the process checks whether or not the
information it is monitoring has changed. If it has, the process notes the time at
which it changed, and schedules itself for the future with another Hang. If it has not
changed, the process makes an appropriate entry in ^InfoHubInfo, issues the alert /
notification, and schedules itself for the future with a Hang for the Period. Because
the META type aggregation mechanism uses a trigger on a node that manages
Subscriber notifications for its Subscription and suppresses storing of data at the
trigger node, a NoInfo process has no means to track activity at a META node.

Configuration processing stores Subscription specifications in the following nodes:

Chapter 4. Configuring an InfoHub Writing an xLine Gleaner

FIS
Page 48, March 13, 2018

r4.5
FIS InfoHub

InfoHubConf(InfoHubID,"Subscriptions",SubscriptionID,BeginningSequenceNumber)=
 [EndingSequenceNumber]:SubscriptionInfodictID:ItemInfoDictID:InfoDictID:
condition:value:[period]:[entryref]:[SubscriberID[,...]]:[PublisherID[,...]]

^InfoHubConf(InfoHubID,"NoInfo",SubscriptionID,BeginningSequenceNumber)=

Example:

Subscription:SysSubscriptions:PatchMe:1000:UpTime:Days:<:30:::404:
Subscription:SysSubscriptions:AuthFail:2000:GenericAny:Anything:[:""""Fail"""":::503:

 Subscription:SysSubscriptions:GTMError:3000:GenericAny:Anything:[:""""%GTM-E""""::::

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX83.txt

This example configures 3 subscriptions–PatchMe, AuthFail, and GTMError. PatchMe is for Subscriber
ID 404 and AuthFail is for Subscriber ID 503. GTMError is for all Subscribers. This example is a part of
SimpleMonitor.conf configuration file in the ULFM Reference Implementation.

Writing an xLine Gleaner

A gleaner is a plug-in routine invoked by an xLine (PipeLine or FileLine) process. It pairs monitored
information with the relevant InfoDictItem ID(s) and returns those pairs to the xLine process for filing
in the InfoHub database. Typically, you use a FileLine Gleaner for active monitoring of a text file and a
PipeLine Gleaner for active monitoring of stdout and/or stderr of a process.

A gleaner must have at least one of the following extrinsic expressions (functions):

• PreExpr: An extrinsic expression (function) to perform any appropriate initialization when the
gleaner first starts or, for example, after every rotation of the monitored file. Your code for PreExpr
must differentiate between the first and subsequent invocations of PreExpr, especially when you
want to initialize values only once. A PreExpr must return an empty string ("") or one or more
<key><delimiter><value> pairs, where <key> is the a path to the InfoDictItem ID, and the value
is the associated monitored information. If PreExpr is not specified, the xLine process bypasses its
invocation.

• InfoExpr: An extrinsic expression (function) that pairs raw input from the monitored text file or the
stdout and/or stderr of a process with relevant InfoDictItem IDs and returns those pairs in the form
of <key><delimited><value> pairs. The raw input is available to InfoExpr as the local variable %l that
contains the current line read from the monitored file or the stdout and/or stderr of the monitored
process. If InfoExpr is not specified, the xLine process bypasses its invocation.

• PostExpr: An extrinsic expression (function) that might provide an appropriate summary when the
gleaner shuts down. A PostExpr returns an empty string ("") or <key><delimiter><value> pairs to
the xLine processes. If specified, PostExpr is executed at the end of the processing of the monitored
file/process, when a new version of monitored file/process is detected, or at InfoHub shutdown. If
PostExpr is not specified, the xLine process bypasses its invocation.

Writing an xLine Gleaner Chapter 4. Configuring an InfoHub

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 49

Here are some tips for writing M code for a gleaner:

1. If you need to return multiple pairs of <key><delimiter><value>, the return value should be the
form of:

<key1><delimiter><value1><delimiter><key2><delimiter><value2>...

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX84.txt

To ensure accurate filing of information in the InfoHub database, choose your delimiter such that
it is never contained in any <key> or <value> portion of the returned string. $char(30) is used as
a delimiter in the ULFM Reference Implementation. You can also specify the delimiter as the case-
insensitive keyword "var", in which case the delimiter should be passed as the first character of the
expression returned by the gleaner in the following pattern:

<delimiter><key1><delimiter><value1><delimiter><key2><delimiter><value2>...

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX85.txt

2. Each <key> is a comma delimited list of canonical positive integers between 1 and 2**31-1
representing the path beneath the xLine to an appropriate InfoDictItems as defined in the InfoHub
Configuration File.

3. Ensure that <key>s never include the InfoHubID, PublisherID, or xLineID; they should only reflect
the InfoDict hierarchy below the xLine's InfoDict.

4. You should always use a NEW command to locally scope variables used by your gleaner; this avoids
inadvertant conflicts with the local variables used in the InfoHub code. A NEW lasts only while
the current scope of execution is active, and prevents accidental modifications of InfoHub local
variables.

5. All user-added or -modified code should also follow that same coding conventions as used with
InfoHub.

Examples:

Gleaner Name Type Description

UptimeGleaner.m PipeLine Monitors information from
the stdout of the uptime
command in the ULFM Reference
Implementation.

LogFileGleaner.m FileLine Monitors the system and
authentication log files in the
ULFM Reference Implementation.

FileLineSyslogGleaner.m FileLine A gleaner implementation whose
InfoExpr function reads /var/log/
messages line-by-line and converts
GT.M-only messages to the form

configs/UptimeGleaner.m
configs/LogFileGleaner.m
configs/FileLineSyslogGleaner.m

Chapter 4. Configuring an InfoHub Writing an xLine Gleaner

FIS
Page 50, March 13, 2018

r4.5
FIS InfoHub

Gleaner Name Type Description

of <key><delimiter><value> pairs.
FileLineSyslogGleaner.m is a part
of the GT.M Monitoring Reference
Implementation.

InfoHub Internals

When an xLine receives a string consisting of key-value pairs, it processes each pair
individually. First, InfoHub verifies the existence of the following node to ascertain
whether there is a Path in the configuration which matches the <key>:

^InfoHubConf(<InfoHubID>,<InfoHubSeqNo>,"Paths",<PublisherID>,<xLineID>,<key>)

If the node exists and is of non-META type, InfoHub performs the following three
updates:

1. ^InfoHubInfo(<InfoHubID>,<PublisherID>,<PipeLineID>,<key>,<seqno>)=":<type>:<value>"

2. ^InfoHubInfo(<InfoHubID>,"TimeToSeqNo",<PublisherID>,<PipeLineID>,<key>,<time>,<seqno>)=""

3. ^InfoHubInfo(<InfoHubID>,"SeqNoToTime",<PublisherID>,<PipeLineID>,<key>,<seqno>)=<time>

where <value> is the one corresponding to the current key; <type> is as specified in
the ^InfoHubConf(...,"Paths",...) node; and <seqno> is the current sequence number
for this key. "TimeToSeqNo" and "SeqNoToTime" are ancillary nodes that InfoHub
uses to perform book-keeping functions. InfoHub skips the first of these updates if
the value for a particular key did not change from the last time. Otherwise, InfoHub
"closes" the previous update by providing the ending sequence number in the value:

^InfoHubInfo(<InfoHubID>,<PublisherID>,<xLineID>,<key>,<seqno>)="<ending
seqno>:<type>:<value>"

Suppose the prior value for key 9999 was .77 and the current value is .64. The
following node represents the InfoHub database update at the time when key 9999
was .77:

^InfoHubInfo(11,112,1137,9999,87)=":String:.77"

The following nodes represent InfoHub database updates when the value
corresponding to key 9999 changes to .64.

• ^InfoHubInfo(11,112,1137,9999,87)="88:String:.77"

• ^InfoHubInfo(11,112,1137,9999,88)=":String:.64"

Here 88 is the ending sequence number of the prior value. The change for key 9999's
corresponding value to .64 also adds the following nodes:

Writing an xLine Gleaner Chapter 4. Configuring an InfoHub

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 51

• ^InfoHubInfo(11,"SeqNoToTime",112,1137,9999,88)="1385382167772674"

• ^InfoHubInfo(11,"TimeToSeqNo",112,1137,9999,1385382167772674,88)=""

In case of META nodes, it performs the following update in addition to the updates to
the node causing the META action:

• ^InfoHubInfo(<InfoHubID>,"Alerts",<PublisherID>",<xLineID>,<key>)="<time>:<SubscriptionID>:info:ref:<last
non-meta path for this event >"

This page is intentionally left blank.

FIS InfoHub
Page 52, March 13, 2018

FIS
FIS InfoHub

FIS
FIS InfoHub

FIS InfoHub
March 13, 2018, Page 53

Chapter 5. Appendix A: FIS GT.M SNMP Plugin

Prerequisites

This appendix provides information about the FIS GT.M SNMP Plugin. Comfort with SNMP concepts,
if not outright familiarity, will help you understand the concepts in this Appendix. If you do not have a
working knowledge of SNMP concepts, the following tutorials, as well as many others may be useful:

• http://www.net-snmp.org/wiki/index.php/Tutorials

• http://oreilly.com/perl/excerpts/system-admin-with-perl/twenty-minute-snmp-tutorial.html

• http://my.safaribooksonline.com/0596008406?portal=oreilly to develop an understanding of SNMP.

SNMP Plugin Overview

The FIS GT.M SNMP Plugin is a ready-to-use subagent that makes information from InfoHub available
for monitoring via SNMP. It uses the Internet standard (RFC-2741) AgentX protocol to communicate
with an SNMP Master Agent. Because FIS tests the SNMP Plugin with Net-SNMP (http://www.net-
snmp.org) as the SNMP Master Agent, Net-SNMP is Supported and other SNMP Master Agents are
Supportable but not Supported.

The SNMP Plugin is a Reporting Adaptor that has both Query and Subscriber relationships with
InfoHub. The following diagram illustrates how the SNMP Plugin interacts with InfoHub to handle
requests for data retrieval and notifications from an SNMP environment.

http://www.net-snmp.org/wiki/index.php/Tutorials
http://oreilly.com/perl/excerpts/system-admin-with-perl/twenty-minute-snmp-tutorial.html
http://my.safaribooksonline.com/0596008406?portal=oreilly
http://www.net-snmp.org
http://www.net-snmp.org

Chapter 5. Appendix A: FIS GT.M SNMP Plugin SNMP Plugin Overview

FIS
Page 54, March 13, 2018

r4.5
FIS InfoHub

A data retrieval request initiated from CLI applications such as snmpget/snmpgetnext goes to the
Master SNMP Agent using the SNMP protocol. The Master SNMP Agent uses the AgentX protocol
to communicate the request to the SNMP Plugin which uses its Query relationship with InfoHub to
retrieve the requested data and sends it to back to the Master SNMP Agent. CLI applications such as
snmptrapd set up a listener for receiving notifications. When a configured condition occurs on InfoHub,
the SNMP Plugin uses its Subscriber relationship to obtain notification details and sends them to the
SNMP Master Agent which then sends it to the listener waiting for notifications.

In an SNMP environment, data values are organized in a tree structure called an MIB (Management
Information Base). The MIB hierarchy starts with a nameless root and extends to specific areas of
information. Typically, an organization has several MIB modules connected hierarchically with each
other. Each object is addressed using a fully qualified OID starting from the nameless root. An OID can
be represented in numeric or mnemonic form. A fully qualified OID in numeric form looks like:

.1.3.6.1.4.1.16830.6.2.1.2.1.1482247793.1.314.0

The same OID in mnemonic form might looks like:

.iso.org.dod.internet.private.enterprises.fis.profile.gtm.infohub.profile1curr.uatenv1curr.syslogcurr.SyslogAllcurr.0

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX87.txt

The following diagram illustrates the fully qualified OID .1.3.6.1.4.1.16830.6.2.1.2.1.1482247793.1.314.0 in
an MIB that contains an InfoHub MIB module sub-tree. The numeric forms are enclosed in brackets ().

SNMP Plugin Overview Chapter 5. Appendix A: FIS GT.M SNMP Plugin

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 55

The non-white boxes represent the OID sub-subtree in the InfoHub MIB module. In the illustration, the
InfoHub MIB module hierarchy starts from 16830.6.2 where:

• fis (16830) identifies the enterprise FIS.

• profile (6) identifies the FIS Profile product. Within FIS, all OIDs below .16830.6. are reserved for use
by the FIS Profile family of products.

• gtm (2) identifies GT.M. OIDs below 16830.6.2 are for sub-trees of InfoHubs. The depth of each
InfoHub OID sub-tree can vary depending on its InfoHub Configuration File.

• infohub (1) represents the level for InfoHubs.

• profile1curr (2) represents the current View of an instance of one InfoHub.

Chapter 5. Appendix A: FIS GT.M SNMP Plugin SNMP Plugin Overview

FIS
Page 56, March 13, 2018

r4.5
FIS InfoHub

• uatenv1curr(1482247793) represents the current View of the Publisher.

• syslogcurr (1) represents the current View of the FileLine Gleaner for the system log.

• SyslogAllcurr (15037) is a grouping that represents all messages filed in the system log.

InfoHub maintains the current and historic data values of monitored elements in the form of Views.
InfoHub provides four Views – curr, hist, time, and snum. Views are different ways of looking at the
current and historic data values of an object. A View is like a filter applied on an object to narrow down
to only those data values that you want to see from an InfoHub. Every object under an InfoHub has
four stems each representing a View. All objects under a stem have the same View Name as the suffix.
The last (leaf) node of each stem is the monitored object for which you need to specify a parameter
called an Object Index.

The objective of stemming of the same object into four Views is to comply with the namespace
restriction that all individual pieces of an OID in an MIB to be unique. The non-white boxes in the OID
illustrate a fully qualified mnemonic OID of the most recent (curr) object stored on the system log and
the curved connectors denote stemming into Views. Notice how each object under .profilecurr has the
curr suffix and the leaf node requires specifying an Object Index1.

To obtain the current or historic data of any monitored element, you need to perform a GET request
(refer to "Performing a GET Request") for either the fully qualified OID as illustrated in the OID
diagram or just the leaf node (for example, .infohubprofile1uatenv1SyslogAllcurr.0).

The four Views are as follows:

View Name (mnemonic suffix) Object Index Description

curr 0 The curr View provides the
latest recorded data value of an
object. The curr View can take
only 0 as the Object Index. 0
indicates the current value. For
example, a GET request for the
infohubprofile1uatenv1SyslogGTMcurr.0
object retrieves its current.

hist 0..n The hist View provides a succession
of data values that were stored
for an object. It can take 0 to n
as the Object Index where 0 is
the latest recorded value and n
is a prior ancestor. n is always in
reverse chronological order. hist.0
is the latest and hist.1 is the value
that was stored immediate before
hist.0. The hist View always returns
data values relative to the latest
recorded information, that is, hist.0

1Only for the last leaf node.

SNMP Plugin Overview Chapter 5. Appendix A: FIS GT.M SNMP Plugin

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 57

View Name (mnemonic suffix) Object Index Description

value becomes hist.1 as soon as it
gets replaced with a new value.

Assuming no new items arrive
between the two GETs, hist.0 and
curr.0 for the same OID return
the same information - that is: the
latest recorded data value.

snum 1..s The snum View provides the data
value of an object based on the
sequence number that InfoHub
used for storing in the database.
The data value returned with
the snum View can be used as a
starting point to identify values
stored after a sequence number. For
example, a GETNEXT request for
infohubprofile1uatenv1SyslogGTMsnum.358153
retrieves the data value that
InfoHub stored using the sequence
number 358154.

The time View relies on the snum
View.

Note that once the sequence
number of the data value of a
monitored element is set, it does
not change even when that element
gets purged or gets succeeded with
a new data value. On the other
hand, the curr and hist Views
change whenever a new data value
is set for an element. Always bear
in mind the distinction between
curr/hist and snum/time Views
when you retrieve a data value
based on the OID returned with a
notification.

time t The time View returns the
mnemonic OID and its sequence
number stored on Infohub at the
time specified with t. t is the time is
seconds since the last UNIX epoch.
For example, if an administrator
is investigating an incident that
occurred around 11/01/2013
14:26:00, the value of t in
infohubprofile1uatenv1SyslogGTMtime.t

Chapter 5. Appendix A: FIS GT.M SNMP Plugin Installing the SNMP Plugin

FIS
Page 58, March 13, 2018

r4.5
FIS InfoHub

View Name (mnemonic suffix) Object Index Description

should be specified as: `date --date
"11/01/2013 14:26:00" +%s`

It is important to note that t is not
the actual time of the incident but
of the time when the information
was stored on InfoHub.

This time View example
returns mnemonic OID
and sequence number like
infohubprofile1uatenv1SyslogGTMsnum.358153
which can be used with a series
of GET and GETNEXT requests to
retrieve data values stored around
the time t.

While the time View provides
granularity up to one second, the
snum View provides in-depth
granularity by retrieving data
values based the sequence in which
they were stored on the InfoHub.

Installing the SNMP Plugin

To install the SNMP Plugin, perform the following steps:

1. Use your package manager to download and install the following packages:

1 snmp Installs SNMP (Simple Network
Management Protocol)
applications like snmpget,
snmpgetnext, snmptrapd, and so
on.

2 snmp-mibs-downloader Installs and manages Management
Information Base (MIB) files

3 snmpd SNMP (Simple Network
Management Protocol) agents

Note

Although the InfoHub SNMP plug-in uses NET-SNMP, NET-SNMP is not FIS
software and FIS does not support NET-SNMP. The sample instructions for installing
and configuring NET-SNMP are merely provided as a convenience to you.

Installing the SNMP Plugin Chapter 5. Appendix A: FIS GT.M SNMP Plugin

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 59

On Ubuntu, the command to download and install these packages is:

$ sudo aptitude install snmpd snmp snmp-mibs-downloader

AIX Notes

For testing the SNMP Plugin on AIX, the FIS GT.M Team built net-snmp 5.7.2 using
the following commands:

./configure --disable-shared --without-kmem-usage
make
make test
sudo make install

To start net-snmp, execute the following command:

sudo /usr/local/sbin/snmpd

To stop net-snmp, execute the following commands:

sudo /usr/local/sbin/snmpd
$ ps -ef | grep snmpd
 root 42270958 1 0 13:46:31 - 0:00 /usr/local/sbin/snmpd
...
$ sudo kill 42270958

Here is a possible default location of SNMP files:

log file: /var/log/snmpd.log
write persistent info: /var/net-snmp
library dir: /usr/local/lib
executable: /usr/local/sbin/snmpd <-- This is the snmpd executable for NET-
SNMP (with the
 corresponding /usr/local/sbin/snmptrapd)
configuration file: /usr/local/share/snmp/snmpd.conf
MIBs dir: /usr/local/share/snmp/mibs <-- You need to place the MIB in this
 location after
 generating it in step 8.
help files: /usr/local/share/man/man[1,3,8]/snmp*

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX92.txt

If you have built the binaries from source, proceed to step 2. If you have installed these packages
using a package manager, proceed directly to step 3.

2. Execute the following commands to check whether the shared library dependencies of your SNMP
application are available.

$ ldd `which snmpget`|grep snmp

Chapter 5. Appendix A: FIS GT.M SNMP Plugin Installing the SNMP Plugin

FIS
Page 60, March 13, 2018

r4.5
FIS InfoHub

This command produces an output like:

libnetsnmp.so.30 => /usr/lib/libnetsnmp.so.30
 (0x00007fc985541000)

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX94.txt

Execute the following command to find the location of the shared library libnetsnmp.so:

$ locate libnetsnmp.so

If the command finds shared library dependency version (libnetsnmp.so.30 in this case), proceed
directly to step 3. Otherwise, find the directory where libnetsnmp*.so and libsnmp.so are installed
on your system.

Change to that directory and make symbolic links to:

• libnetsnmp*.so.<ver_snmp_cmds_expect> from libnetsnmp.so.<installed_ver>.

• libsnmp.so.<ver_snmp_cmds_expect> from libsnmp.so.<installed_ver>.

Suppose .15 version of the shared library dependencies is installed, but your smnp command line
programs expect .30, you might make symbolic links as follows:

$ sudo ln -s libnetsnmp.so.15 libnetsnmp.so.30
$ sudo ln -s libnetsnmpagent.so.15 libnetsnmpagent.so.30
$ sudo ln -s libnetsnmphelpers.so.15 libnetsnmphelpers.so.30
$ sudo ln -s libnetsnmpmibs.so.15 libnetsnmpmibs.so.30
$ sudo ln -s libnetsnmptrapd.so.15 libnetsnmptrapd.so.30
$ sudo ln -s libsnmp.so.15 libsnmp.so.30

3. Add /usr/local/lib to your LD_LIBRARY_PATH. If LB_LIBRARY_PATH is not defined, set
LD_LIBRARY_PATH to point to /usr/local/lib.

4. Using your favorite editor, open /etc/snmp/snmpd.conf as user root (via sudo) (root-only access is
needed to protect the community string) and ensure /etc/snmp/snmpd.conf contains the following
lines:

SNMP daemon listens on default port on localhost
agentAddress udp:127.0.0.1:161
Create a view for the InfoHub
view InfoHubonly included .1.3.6.1.4.1.16830.6.2
Allow read-only access to the InfoHub on the localhost
rocommunity <communitystring> 127.0.0.1 -V InfoHubonly
Have snmpd convert agentx notifications into informs
informsink 127.0.0.1 <communitystring>
#AgentX Sub-agents
Have snmpd run as a master agent
master agentx
Tell snmpd where to listen for Agentx connections
agentXSocket tcp:127.0.0.1:705

Operating the SNMP Plugin Chapter 5. Appendix A: FIS GT.M SNMP Plugin

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 61

Replace <communitystring> with an appropriate password. <communitystring> is used to
authenticate SNMPv1/v2c transactions.

AIX Notes

To allow NET-SNMP and AIX's native snmp to coexist, assign a new port for the
NET-SNMP agent by modifying the agentAddress line in snmp.conf:

agentAddress udp:127.0.0.1:9716

If NET-SNMP was installed from binaries, please note down what port number was
assigned as this will be needed by snmpget, snmpgetnext, etc. For example:

agentAddress udp:127.0.0.1:1610

5. Using your favorite editor, open /etc/snmp/snmptrapd.conf as user root (via sudo), and if /etc/snmp/
snmptrapd.conf does not exist, create it with R/W only permission for user root (root-only access is
needed to protect the community string). Add the following line to /etc/snmp/snmptrapd.conf:

authCommunity log <communitystring>

Replace <communitystring> with the same password that you used in step 5.

6. Restart your network management services to apply changes in snmpd.conf and snmptrapd.conf. On
Ubuntu, the command is:

$ sudo service snmpd restart

7. Set up the environment for your InfoHub and execute the following command to generate the MIB
module from InfoHub.

$gtm_dist/mumps -r generatemib >INFOHUB-1-MIB

8. Place INFOHUB-1-MIB in one of the directories in the MIB search path, for example, /usr/local/
share/snmp/mibs. This allows both you and snmptrapd (discussed later) to access it.

9. Congratulations! The SNMP Plugin is now installed on your system. Perform step 8 and 9 every
time there is a change to the InfoHub configuration that impacts the structure of InfoHub or the
objects available. You do not need to perform these steps if your updates neither impacts the
InfoHub structure nor alters the number of objects available, for example updating a subscription
condition.

Operating the SNMP Plugin

Using the same environment setup described for the InfoHub, you can operate the SNMP Plugin from
the shell and from within GT.M. To operate the SNMP Plugin from the shell, the general command is:

$gtm_dist/mumps -run IHsnmp --action=<Action> --plugin=PluginId

Chapter 5. Appendix A: FIS GT.M SNMP Plugin Starting the SNMP Plugin

FIS
Page 62, March 13, 2018

r4.5
FIS InfoHub

• <Action> is one of the following: start, status, shutdown.

• --plugin specifies the subscriberID which tells the plugin which alerts to pick up from the InfoHub.
The subscribers are defined in the InfoHub configuration file. Currently, you can have only one
SNMP plugin per system.

• All <Action> entry points in IHsnmp API produce output to $IO.

To operate the SNMP Plugin from within GT.M, invoke the action entry point in the IHsnmp API:

action^IHsnmp("<Action>","PluginID")

Starting the SNMP Plugin

To start the SNMP Plugin from the shell, execute a command like:

$ $gtm_dist/mumps -run IHsnmp --action=start --plugin=PluginId

• The "start" action also suffices to start the SNMP Plugin after a "dirty" shutdown, for example, after a
system crash, or after an inadvertent MUPIP STOP of the SNMP Plugin process.

To start the SNMP Plugin from within GT.M, invoke the action entry point in the IHsnmp API and pass
"start" as the first parameter.

action^IHsnmp("start","Pluginid")

Example:

$gtm_dist/mumps -run IHsnmp --action=start --plugin=5

GTM> do action^IHsnmp("start","5")

Both examples start the SNMP Plugin.

Monitoring (Checking) an SNMP Plugin

To check the status of the SNMP Plugin from the shell, execute a command like:

$ $gtm_dist/mumps -run IHsnmp --action=status --plugin=PluginId

This command displays a summary of the current status of the SNMP Plugin and whether it is
connected to the Master SNMP Agent.

To check the status of an SNMP Plugin from within GT.M, invoke the action entry points in the
IHsnmp API and pass "status" as the first parameter:

action^IHsnmp("status","Pluginid")

Example:

$gtm_dist/mumps -run IHsnmp --action=status --plugin=5

Shutdown an SNMP Plugin Chapter 5. Appendix A: FIS GT.M SNMP Plugin

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 63

GTM>do action^IHsnmp("status","5")

Both examples display the status of the SNMP Plugin.

Shutdown an SNMP Plugin

To shut down the SNMP Plugin from the shell, execute a command like:

$gtm_dist/mumps -run IHsnmp --action=shutdown --plugin=PluginId

This command effects a clean shuts down of the SNMP Plugin.

To shutdown an SNMP Plugin from within GT.M, invoke the action entry points in the IHsnmp API
and pass "shutdown" as the first parameter:

action^IHsnmp("shutdown","5")

Example:

$gtm_dist/mumps -run IHsnmp --action=shutdown --plugin=5

GTM>do action^IHsnmp("shutdown","5")

Both examples shutdown the SNMP Plugin.

Performing a GET Request (snmpget)

The snmpget CLI application performs GET requests from an InfoHub SNMP module. The snmpget
command retrieves data from monitored objects according to the specified View. A typical syntax of the
snmpget command for the SNMP Plugin is:

snmpget [<snmpcmd_common_options>] -v2c -c <communitystring> -Oa [-m
 <MIBModule(s)>] OID [OID]...

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX117.txt

snmpcmd_common_options
snmpcmd_common_options are options and agent arguments that are common to most snmp
commands. For more information, refer to the man page entry for snmpcmd.

-v
Specifies the SNMP protocol version. If you are using the GT.M SNMP Plugin, always specify -v2c
to indicate RFCs (1901-1908) as the SNMP protocol version. For more information, refer to the man
page entry for snmpcmd.

-m
Specifies a colon delimited list of MIB modules. If you are using the GT.M SNMP Plugin, you
would specify -m INFOHUB-1-MIB as the InfoHub MIB module. The MIB acts as a dictionary that
translates mnemonics, which are typically more user-friendly, into the numeric values used in the
SMNP protocol. For more information, refer to the man page entry for snmpcmd.

Chapter 5. Appendix A: FIS GT.M SNMP Plugin Performing a GET Request (snmpget)

FIS
Page 64, March 13, 2018

r4.5
FIS InfoHub

-c
Specifies the community string for SNMP v1/v2c transactions. For more information, refer to the
man page entry for snmpcmd.

-Oa
Displays strings in ASCII form. For more information on the -O option, refer to the man page entry
for snmpcmd.

OID
OID is the object identifier of a monitored object in an MIB. If your monitored objects are in the
InfoHub MIB module, you need to additionally specify one of the four Views and an Object Index. A
command like snmptranslate -m INFOHUB-1-MIB -Tp | less displays a list of all objects stored
in the InfoHub MIB module.

For more information on the snmpget command options, refer to the man page of the snmpget
command.

Examples:

With curr View:

$ snmpget -v2c -c <communitystring> -Oa -m INFOHUB-1-MIB localhost
 INFOHUB-1-MIB::infohubtestMyBoxSyslogDBFILEXTcurr.0

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX118.txt

This example retrieves the current data value of the object infohubtestMyBoxSyslogDBFILEXTcurr.0
from the InfoHub MIB module.

With hist View:

$ snmpget -v2c -c <communitystring> -Oa -m INFOHUB-1-MIB localhost
 INFOHUB-1-MIB::infohubtestMyBoxSyslogDBFILEXThist.1

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX119.txt

This example retrieves the data value of the object prior to the current value. Object Index 1 specifies
the value that was set for the infohubtestMyBoxSyslogDBFILEXT object before the current value.

$ snmpget -v2c -c <communitystring> -Oa -m INFOHUB-1-MIB localhost
 INFOHUB-1-MIB::infohubtestMyBoxSyslogDBFILEXThist.0

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX120.txt

This example retrieves the current data value of the object. Note that Object Index 0 for the hist View is
the same as curr.0 and specifies the current data value.

With time View:

The time View is only available with snmpgetnext. Because time is specified in seconds since the
last UNIX epoch and InfoHub time granularity is much less than one second, snmpget is not able to
determine the exact time. For more information see "Performing a GETNEXT request".

With snum View:

Performing a GETNEXT Request (snmpgetnext) Chapter 5. Appendix A: FIS GT.M SNMP Plugin

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 65

$ snmpget -v2c -c <communitystring> -Oa -m INFOHUB-1-MIB localhost
 INFOHUB-1-MIB::infohubtestMyBoxSyslogGTMFatalsnum.1011912

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX121.txt

This example retrieves the data value of a GT.M Fatal error stored on InfoHub with sequence number
1011912. In most cases, you would use the snum View in conjunction with the time View which returns
the sequence number of the monitored object's mnemonic OID.

AIX Notes

On AIX, you need to explicitly specify the port number for the NET-SNMP Agent
since another port was assigned during installation (see the agentAddress line in
snmpd.conf). A sample snmpget command might look like:

snmpget -v2c -c <communitystring> -Oa -m INFOHUB-1-MIB 127.0.0.1:9716
 INFOHUB-1-MIB::infohubtestMyBoxSyslogAllcurr.0

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX122.txt

or:

snmpget -v2c -c <communitystring> -Oa -m INFOHUB-1-MIB 127.0.0.1:1610
 INFOHUB-1-MIB::infohubtestMyBoxSyslogAllcurr.0

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX123.txt

Performing a GETNEXT Request (snmpgetnext)

The snmpgetnext CLI application performs GETNEXT requests from an InfoHub SNMP module. The
snmpgetnext command retrieves data that lies next to the specified objects in the order specified by the
View. A typical syntax of the snmpgetnext command in the SNMP Plugin is:

snmpgetnext [<snmpcmd_common_options>] -v2c -Oa -c <communitystring> [-m
 <MIBModule(s)>] OID [OID]...

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX124.txt

snmpcmd_common_options
snmpcmd_common_options are options and agent arguments that are common to most snmp
commands. For more information, refer to the man page entry for snmpcmd.

-v
Specifies the SNMP protocol version. If you are using the GT.M SNMP Plugin, always specify -v2c
to indicate RFCs (1901-1908) as the SNMP protocol version. For more information, refer to the man
page entry for snmpcmd.

-m
Specifies a colon delimited list of MIB modules. If you are using the GT.M SNMP Plugin, you
would specify -m INFOHUB-1-MIB as the InfoHub MIB module. The MIB acts as a dictionary that

Chapter 5. Appendix A: FIS GT.M SNMP Plugin Performing a GETNEXT Request (snmpgetnext)

FIS
Page 66, March 13, 2018

r4.5
FIS InfoHub

translates mnemonics, which are typically more user-friendly, into the numeric values used in the
SMNP protocol. For more information, refer to the man page entry for snmpcmd.

-c
Specifies the community string for SNMP v1/v2c transactions. For more information, refer to the
man page entry for snmpcmd.

-Oa
Displays strings in ASCII form. For more information on the -O option, refer to the man page entry
for snmpcmd.

OID
OID is the object identifier of a monitored object in an MIB. If your monitored objects are in the
InfoHub MIB module, you need to additional specify one of the four Views and an Object Index. A
command like snmptranslate -m INFOHUB-1-MIB -Tp | less displays a list of all objects stored
in the InfoHub MIB module.

For more information on the snmpgetnext command options, refer to the man page of the snmpgetnext
command.

Examples:

With curr View:

$ snmpgetnext -v2c -c <communitystring> -Oa -m INFOHUB-1-MIB localhost
 INFOHUB-1-MIB::infohubtestMyBoxSyslogDBFILEXTcurr.0

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX125.txt

This example retrieves the data value of the object that lies immediately after
infohubtestMyBoxSyslogDBFILEXT in the InfoHub MIB module.

With hist View:

$ snmpgetnext -v2c -c <communitystring> -Oa -m INFOHUB-1-MIB localhost
 INFOHUB-1-MIB::infohubtestMyBoxSyslogDBFILEXThist.1

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX126.txt

This example retrieves the predecessor (that is, hist.2) of the hist.1 value of the object
infohubtestMyBoxSyslogDBFILEXThist.

With time View:

$ snmpgetnext -v2c -c <communitystring> -Oa -m INFOHUB-1-MIB localhost
 INFOHUB-1-MIB::infohubtestMyBoxSyslogGTMFataltime.`date --date "10/09/2013 19:05:00" +%s`
INFOHUB-1-MIB::infohubtestInfoHubOID = OID:
 INFOHUB-1-MIB::infohubtestMyBoxSyslogGTMFatalsnum.19

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX127.txt

This example retrieves the mnemonic OID and the sequence number of the first fatal GT.M error that
was stored on Infohub after 10/09/2013 14:26:00. This View is useful in situations where you need to
investigate incidents occurring around a specified time.

Exploring the InfoHub MIB (snmptranslate) Chapter 5. Appendix A: FIS GT.M SNMP Plugin

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 67

With snum View:

$ snmpgetnext -v2c -c <communitystring> -Oa -m INFOHUB-1-MIB localhost
 INFOHUB-1-MIB::infohubtestMyBoxSyslogGTMFatalsnum.18
INFOHUB-1-MIB::infohubtestMyBoxSyslogGTMFatalsnum.19 = STRING: "Oct 9 19:06:07 gtmnode20
 GTM-SRCSRVR-INSTANCE1[14796]: %GTM-F-FORCEDHALT, Image HALTed by MUPIP STOP -- generated
 from 0x0000000000000000."

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX128.txt

This example uses the sequence number (snum.18) returned with the time View example to retrieve
the data value of the next GT.M Fatal error stored on InfoHub immediately after sequence number 18.
In most cases, you would use the snum View in conjunction with the time View which returns the
sequence number of the monitored object's mnemonic OID.

You can also use the snmpbulkget command to display the next 10 data values of objects stored in
InfoHub after sequence number 18.

$ snmpbulkget -v2c -c <communitystring> -Oa -m INFOHUB-1-MIB localhost
 INFOHUB-1-MIB::infohubtestMyBoxSyslogGTMFatalsnum.18

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX129.txt

You can also specify -Cr20 to retrieve the next 20 data values of objects stored in InfoHub after
sequence number 18.

AIX Notes

On AIX, you need to explicitly specify the port number for the NET-SNMP Agent
since another port was assigned during installation (see the agentAddress line in
snmpd.conf). A sample snmpgetnext command might look like:

snmpgetnext -v2c -c <communitystring> -Oa -m INFOHUB-1-MIB 127.0.0.1:9716
 INFOHUB-1-MIB::infohubtestMyBoxSyslogAllcurr.0

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX130.txt

or:

snmpgetnext -v2c -c <communitystring> -Oa -m INFOHUB-1-MIB 127.0.0.1:1610
 INFOHUB-1-MIB::infohubtestMyBoxSyslogAllcurr.0

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX131.txt

Exploring the InfoHub MIB (snmptranslate)

The snmptranslate CLI application can be used to explore/traverse the OIDs in your InfoHub MIB. The
snmptranslate command translates one or more OIDs in numeric form to textual form or vice versa. A
typical syntax of the snmptranslate command in the SNMP Plugin is:

snmptranslate [<snmpcmd_common_options>] -m <MIBModule(s)> {-Tp|-Td}

Chapter 5. Appendix A: FIS GT.M SNMP Plugin Exploring the InfoHub MIB (snmptranslate)

FIS
Page 68, March 13, 2018

r4.5
FIS InfoHub

 {-Oa|-On} [-IR] OID [OID]...

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX132.txt

-T
Specifies the translation option. -Tp displays translation output in tree format. -Td displays
tranlation output in full detail. For more information, see TRANSOPTS in the man page entry for
snmptranslate.

snmpcmd_common_options
snmpcmd_common_options are options and agent arguments that are common to most snmp
commands. For more information, refer to the man page entry for snmpcmd.

-m
Specifies a colon delimited list of MIB modules. If you are using the GT.M SNMP Plugin, you
would specify -m INFOHUB-1-MIB as the InfoHub MIB module. The MIB acts as a dictionary that
translates mnemonics, which are typically more user-friendly, into the numeric values used in the
SMNP protocol. For more information, refer to the man page entry for snmpcmd.

-Oa
Displays strings in ASCII form. -On displays output in numeric form. For more information on the -
O option, refer to OUTPUT OPTION in the man page entry for snmpcmd.

OID
OID is the object identifier of a monitored object in an MIB. If your monitored objects are in the
InfoHub MIB module, you need to additional specify one of the four Views and an Object Index.

-IR
Specifies the use of random access lookup to search the OID(s). It allows you to specify only the
desired object rather than its fully qualified path. For more information, see INPUT OPTIONS in the
man page entry for snmpcmd.

Example:

Traversing an OID using the Tree View:

$ snmptranslate -m INFOHUB-1-MIB -Tp | less
+--gtm(2)
|
 +--infohub(1)
 |
 +--profile1(2)
 |
 +--profile1curr(1)
 | |
 | +--profile1uatenv1curr(641977582)
 | |
 | +--profile1uatenv1Syslogcurr(1)
 | | |
 | | +-- -R-- String profile1uatenv1SyslogGTMcurr(159)

Exploring the InfoHub MIB (snmptranslate) Chapter 5. Appendix A: FIS GT.M SNMP Plugin

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 69

 | | +-- -R-- String profile1uatenv1SyslogGTMFatalcurr(265)
 | | +-- -R-- String profile1uatenv1SyslogAllcurr(314)
 | | +-- -R-- String profile1uatenv1SyslogGTMFailcurr(323)
 | | +-- -R-- String profile1uatenv1SyslogGTMsecshrcurr(358)
 | | +-- -R-- String profile1uatenv1SyslogGTMKillcurr(979)
 | | +-- -R-- String profile1uatenv1SyslogJNLACCESScurr(150372826)
 | | +-- -R-- String profile1uatenv1SyslogGBLOFLOWcurr(150372882)
 | | +-- -R-- String profile1uatenv1SyslogGTMSECSHRDMNSTARTEDcurr(150373907)
 | | +-- -R-- String profile1uatenv1SyslogJNLSPACELOWcurr(150375771)
 | | +-- -R-- String profile1uatenv1SyslogGTMSECSHRSRVFcurr(150376298)
 | | +-- -R-- String profile1uatenv1SyslogGTMASSERTcurr(150376532)
 | | +-- -R-- String profile1uatenv1SyslogTPRESTARTcurr(150376595)
 | | +-- -R-- String profile1uatenv1SyslogMUTEXLCKALERTcurr(150376920)
 | | +-- -R-- String profile1uatenv1SyslogGTMSECSHRcurr(150376938)
 | | +-- -R-- String profile1uatenv1SyslogDBFILEXTcurr(150377491)
 | | +-- -R-- String profile1uatenv1SyslogJNLFSYNCERRcurr(150377498)
 | | +-- -R-- String profile1uatenv1SyslogDBFSYNCERRcurr(150378082)
 | | +-- -R-- String profile1uatenv1SyslogNOSPACECREcurr(150378762)
 | | +-- -R-- String profile1uatenv1SyslogOUTOFSPACEcurr(150378788)
 | | +-- -R-- String profile1uatenv1SyslogTPNOTACIDcurr(150378867)
 | | +-- -R-- String profile1uatenv1SyslogDBDANGERcurr(150378976)
 | | +-- -R-- String profile1uatenv1SyslogREQ2RESUMEcurr(150379035)
 | | +-- -R-- String profile1uatenv1SyslogSUSPENDINGcurr(150379139)
 | | +-- -R-- String profile1uatenv1SyslogSTUCKACTcurr(150381523)
 | | +-- -R-- String profile1uatenv1SyslogGTMASSERT2curr(150382164)
 | | +-- -R-- String profile1uatenv1SyslogREPLINSTFROZENcurr(150382650)
 | | +-- -R-- String profile1uatenv1SyslogREPLINSTUNFROZENcurr(150382667)
 | |
 | +--profile1uatenv1RegReplFetchcurr(583368784)

The leaf nodes under profile1uatenv1Syslogcurr(1) start from
profile1uatenv1SyslogGTMcurr(159) up to
profile1uatenv1SyslogREPLINSTUNFROZENcurr(150382667). As explained in the "Performing
an SNMP GET Request", a GET request for profile1uatenv1SyslogDBFILEXTcurr.0 produces the current
value.

The InfoHub Configuration File entries for profile1uatenv1SyslogDBFILEXTcurr.0 can be as
follows:

InfoHub Component Name InfoHub Configuration File
entry

InfoHub profile1 InfoDict:InstancesInfoHub:profile1:2

Publisher uatenv1 Publisher:Instances:uatenv1:::infogleaner:1000:1000

Xline syslog FileLine:Xline:Syslog:1:uatenv1:/
var/log/messages:2:1:
$char(30):PreExpr^FLGleaner:InfoExpr^FLGleaner

InfoDict Item DBFILEEXT InfoDictItem:SyslogIndividual:DBFILEXT:150377491::String

Chapter 5. Appendix A: FIS GT.M SNMP Plugin Exploring the InfoHub MIB (snmptranslate)

FIS
Page 70, March 13, 2018

r4.5
FIS InfoHub

These entries are tied together in the InfoHub Configuration File as follows:

InfoHub:profile1:2
Publisher:Instances:uatenv1:::infogleaner:1000:1000

 FileLine:Xline:Syslog:1:uatenv1:/var/log/messages:2:1:$char(30):PreExpr^FLGleaner:
InfoExpr^FLGleaner
InfoDict:Instances
InfoDictItem:Instances:uatenv1:::
InfoDict:SyslogParent:1:Instances
InfoDictItem:SyslogParent:Syslog:1:::
// All syslog messages
InfoDict:SyslogAll::SyslogParent
InfoDictItem:SyslogAll:All:314:::All syslog messages
// All GT.M syslog messages
InfoDict:SyslogGTM::SyslogParent
InfoDictItem:SyslogGTM:GTM:159:::All GT.M syslog messages
// All fatal syslog messages
InfoDict:SyslogFatal::SyslogParent
InfoDictItem:SyslogFatal:GTMFatal:265:::All fatal syslog messages
// Individual syslog message paths
InfoDict:SyslogIndividual::SyslogParent
InfoDictItem:SyslogIndividual:JNLACCESS:150372826::String
InfoDictItem:SyslogIndividual:GBLOFLOW:150372882::String
InfoDictItem:SyslogIndividual:GTMSECSHRDMNSTARTED:150373907::String
InfoDictItem:SyslogIndividual:JNLSPACELOW:150375771::String
InfoDictItem:SyslogIndividual:GTMSECSHRSRVF:150376298::String
InfoDictItem:SyslogIndividual:GTMASSERT:150376532::String
InfoDictItem:SyslogIndividual:TPRESTART:150376595::String
InfoDictItem:SyslogIndividual:MUTEXLCKALERT:150376920::String
InfoDictItem:SyslogIndividual:GTMSECSHR:150376938::String
InfoDictItem:SyslogIndividual:DBFILEXT:150377491::String

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX134.txt

Displaying full details of an OID:

$ snmptranslate -m INFOHUB-1-MIB -Td -IR -Oa profile1uatenv1SyslogGTMcurr
INFOHUB-1-MIB::profile1uatenv1SyslogGTMcurr
profile1uatenv1SyslogGTMcurr OBJECT-TYPE
 -- FROM INFOHUB-1-MIB
 SYNTAX OCTET STRING
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "All GT.M syslog messages"
::= { iso(1) org(3) dod(6) internet(1) private(4) enterprises(1) fis(16830) profile(6)
 gtm(2)
 infohub(1) profile1(2) profile1curr(1) profile1uatenv1curr(641977582)
 profile1uatenv1Syslogcurr(1) 159 }

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX135.txt

This example displays all details associated with profile1uatenv1SyslogGTMcurr.

Listening for Alerts (snmptrapd) Chapter 5. Appendix A: FIS GT.M SNMP Plugin

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 71

Displaying an OID in numeric form:

$ snmptranslate -m INFOHUB-1-MIB -IR -On profile1uatenv1SyslogGTMcurr
.1.3.6.1.4.1.16830.6.2.1.2.1.641977582.1.159

This example displays profile1uatenv1SyslogGTMcurr in numeric form.

Listening for Alerts (snmptrapd)

The snmptrapd CLI application sets up a listener for SNMP notifications (TRAP or INFORM) from
the Master SNMP Agent. The SNMP Plugin uses its Subscriber relationship with InfoHub to obtain
notification details and sends them to the SNMP Master Agent. Then, snmptrapd receives those
notifications in the form of a TRAP or an INFORM. INFORM differs from a TRAP in that it requires
acknowledgement message, while the TRAP does not. Because snmptrapd, by default, listens for SNMP
notifications on the special privilege UDP port 162 on IPv4 interfaces, you need to run the snmptrapd
command as root. At any given time, only one snmptrapd can receive notifications but you can set up
one or more listening addresses (refer to the man page entry for snmpd for more information). A typical
syntax of the snmptrapd command in the SNMP Plugin is:

snmptrapd[<snmpcmd_common_options>] -m <MIBModule(s)>
-Lo -f -t -Oa

-f
Disables forking from the calling shell. For more information, refer to the man page entry for
snmptrapd.

-t
Disables logging of messages to the system log. For more information, refer to the man page entry
for snmptrapd. For more information, refer to the man page entry for snmptrapd.

snmpcmd_common_options
snmpcmd_common_options are options and agent arguments that are common to most snmp
commands. For more information, refer to the man page entry for snmpcmd.

-L
Specifies the mechanism and target location for messages coming to snmptrapd. -Lo specifies that
the received messages should be logged to STDOUT. For more information, refer to the LOGGING
OPTIONS in the man page entry for snmpcmd.

-Oa
Displays strings in ASCII form. For more information on the -O option, refer to the man page entry
for snmpcmd.

For more information on the snmptrapd command options, refer to the man page of the snmptrapd
command.

Examples:

$ sudo snmptrapd -m INFOHUB-1-MIB -Lo -f -t -Oa

Chapter 5. Appendix A: FIS GT.M SNMP Plugin Listening for Alerts (snmptrapd)

FIS
Page 72, March 13, 2018

r4.5
FIS InfoHub

SNMPv2-SMI::snmpModules.1.1.4.1.0 = OID: INFOHUB-1-MIB::infohubtestMyBoxSyslogDBFILEXTcurr.0
2013-10-23 03:34:10 localhost.localdomain [UDP: [127.0.0.1]:54501->[127.0.0.1]]:
SNMPv2-SMI::mib-2.1.3.0 = Timeticks: (118883997) 13 days, 18:13:59.97
SNMPv2-SMI::snmpModules.1.1.4.1.0 = OID:
 INFOHUB-1-MIB::infohubtestMyBoxSyslogDBFILEXTcurr.0

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX138.txt

This example sets up a listener for notifications coming from InfoHub. -Lo specifies that the messages
are logged on standard output. The DBFILEXT notification that arrives on snmptrapd is from a Noinfo
subscription called DBFILEXT which InfoHub raised due to lack of activity for the DBFILEXT message.

AIX Notes

On AIX, use the NET-SNMP executable to set up a listener for notifications coming
from InfoHub. A sample snmptrapd command might look like:

sudo /usr/local/sbin/snmptrapd -m INFOHUB-1-MIB -Oa -Lo -f -t

FIS
FIS InfoHub

FIS InfoHub
March 13, 2018, Page 73

Chapter 6. Appendix B: Reference Implementations

GT.M Monitoring

Your InfoHub distribution comes with a GT.M Monitoring Reference Implementation that can monitor
GT.M messages in the system log and GT.M databases V6.0-002 and above. It is possible to monitor
any GT.M version prior to V6.0-002 with some modifications. Modifications are necessary because
the format and content of file header listings, messages, and gleaning techniques vary from release
to release. For example, to monitor an earlier release which lacks the $ZPEEK() function, you would
have to use other techniques, such as parsing DSE output for example, with a program such as the
%DSEWRAP utility.

The following table contains information about the files that are used with the GT.M Monitoring
Reference Implementation. These files reside in an InfoHub installation. You can view the configuration
files from the samples subdirectory of your InfoHub distribution or download them from the links in

the table. You can also click to download all files of the GT.M Monitoring Reference
Implementation together or open directly from http://tinco.pair.com/bhaskar/gtm/applications/infohub/
GTM_Monitoring_RI.zip.

Component Name Description Download

InfoHub Configuration
File

dbinstances.conf Configuration file used
to configure a server.
It includes InfoDict
files gtmmessages.conf,
gtmfields.conf,
gtmdbregions.conf
and gtminstances.conf
for monitoring
database instances.
gtmmessages.conf
and gtmfields.conf
are user created files
and are subsets of
IHRegionReplInfoDict.conf
and
IHGtmSyslogMessages.conf
respectively.
gtmdbregions.conf
and gtminstances.conf
are created and
updated by the routine
gtmConfigGenerator,
described below.

GT.M Sylog Messages
InfoDict

IHGtmSyslogMessages.confProvides the
SyslogInstances InfoDict

configs/GTM_Monitoring_RI.zip
configs/dbinstances.conf
configs/IHGtmSyslogMessages.conf

Chapter 6. Appendix B: Reference Implementations GT.M Monitoring

FIS
Page 74, March 13, 2018

r4.5
FIS InfoHub

Component Name Description Download

which is used to define
GT.M messages to be
monitored. Use this
file as the basis for
gtmmessages.conf.

Limited InfoDict of GT.M
Sylog Messages

sysloginstances.conf Provides a sample
SyslogInstances InfoDict
that defines a small subset
of GT.M messages to
be monitored. This is a
simple starting point for
testing InfoHub's syslog
monitoring capabilities.

Full Region and
Replication InfoDict

IHRegionReplInfoDict.confDefines region and
replication fields of a
GT.M region and groups
them in the following
categories (InfoDict
Domains)– Gdregion,
Gtmrecvlocal,
Gtmsourcelocal,
Gtmsrclcl, Jnlpoolctl,
Nodelocal, Recvpoolctl,
Replinsthdr,
Sgmntaddrs,
Sgmntdata,
Updhelperctrl, and
Updproclocal. Use
this file as the basis for
gtmdbfields.conf.

Full Region and
Replication InfoDict

dbfields.conf Defines a subset of region
and replication fields of a
GT.M region and groups
them in the following
categories (InfoDict
Domains)– Gdregion,
Gtmrecvlocal,
Gtmsourcelocal,
Gtmsrclcl, Jnlpoolctl,
Nodelocal, Recvpoolctl,
Replinsthdr,
Sgmntaddrs,
Sgmntdata,
Updhelperctrl, and
Updproclocal. This is a
simple starting point for
testing InfoHub's GT.M

configs/IHGtmSyslogMessages.conf
configs/IHRegionReplInfoDict.conf
configs/dbfields.conf

GT.M Monitoring Chapter 6. Appendix B: Reference Implementations

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 75

Component Name Description Download

database monitoring
capabilities.

Syslog FileLine Gleaner FileLineSyslogGleaner.m A gleaner whose InfoExpr
function reads /var/log/
messages line-by-line
and converts GT.M only
messages in the form
of key:value pairs and
files them in the InfoHub
Database. A set of GT.M
version specific routines
are provided (in the
plugins subdirectory of
the distribution) that
assist the gleaner, e.g.,
messages60002.m.

GT.M Application
Instance Configuration
Extraction Script

gather_instance_info.sh Use this script to source
your GT.M application
configuration and output
the relevant pieces of
information to monitor
the GT.M application. The
output file is processed
by gtmConfGenerator
(described below) to
generate an publisher
configuration and
InfoDict entries for the
GT.M instance to be
monitored.

This standalone script
does not require any
part of the InfoHub to be
present.

The script will not extract
GT.M encryption settings.
Those must be defined
after gtmConfGenerator
generates the Publisher
configuration for the
GT.M application.

InfoHub Configuration
generator for GT.M
application instances

gtmConfGenerator.m Creates and/or updates
InfoHub configuration
files, gtmdbregions.conf
and gtminstances.conf,
and instance specific

configs/FileLineSyslogGleaner.m
configs/gtmRegionConfGenerator.m
configs/gtmRegionConfGenerator.m

Chapter 6. Appendix B: Reference Implementations GT.M Monitoring

FIS
Page 76, March 13, 2018

r4.5
FIS InfoHub

Component Name Description Download

gleaners named
IdMapFor<PublisherNameHere>.m.
dbinstances.conf includes
gtmdbregions.conf and
gtminstances.conf. You
should not need to edit
these files by hand. After
each execution of this
routine, be sure to reload
the InfoHub configuration
file.

gtmdbregions.conf
contains unique InfoDict
entries for each newly
discovered GT.M database
region and replication
instance.

gtminstances.conf
contains the publisher
configuration for the
to be monitored GT.M
application instance.

IdMapFor<PublisherNameHere>.m
gleaners should be placed
in $ihsrcdir by default. If
the routine cannot find
that directory, the user
will be directed to copy
the files there.

SNMP daemon sample
configuration

snmpd.conf A sample configuration
for the Net-SNMP daemon

SNMP trap daemon
sample configuration

snmptrapd.conf A sample configuration
for the Net-SNMP trap
daemon

To install the GT.M Monitoring Reference Implementation, perform the following steps:

1. Install InfoHub and create an InfoHub database. For more information, refer to Installing InfoHub.

2. Install the FIS GT.M SNMP Plugin. For installation instructions and prerequisites, refer to Installing
the SNMP Plugin.

3. Change to the InfoHub configs directory.

configs/snmpd.conf
configs/snmptrapd.conf

GT.M Monitoring Chapter 6. Appendix B: Reference Implementations

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 77

4. Open a new terminal session and execute gather_instance_info.sh passing it as a parameter the
environment configuration of the GT.M database you want to monitor.

/path/to/inofhub/samples/gather_instance_info.sh /path/to/gtm/instance/env_file >
 someinstance1.out

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX140.txt

Please ensure that you generate only one file per instance. Do not concatentate these files into one.

5. Open a new terminal session and source environment of the InfoHub and configure the new
instance using the output file from above

$gtm_dist/mumps -run gtmConfGenerator someinstance1.out

Follow the prompts to create a new configuration, modify an existing configuration or create a new
configuration as a copy of another configuration. Copies will acquire the Publisher configuration of
the original configuration will all of the InfoDict IDs changed for the new configuration.

6. Copy all desired files from samples/IHRegionReplInfoDict.conf into configs/gtmfields.conf

Copy all desired files from samples/IHGtmSyslogMessages.conf into configs/gtmmessages.conf or
remove the "Include" directive from dbinstances.conf

7. Copy all desired files from samples/IHRegionReplInfoDict.conf into configs gtmfields.conf

Review the new configuration files as there may be some editing needed (use your favorite
editor). If the global directory uses environment variables, add Env: directives for them. In the
gather_instance_info.sh output file, e.g. someinstance1.out, look under the "GlobalDirectory"
section for environment variables. If all of the environment variables share a common prefix, for
example, "SCAU_DB_", then running env|grep SCAU_DB_*|sort may be helpful in gathering the
environment variables and their corresponding values. If the global directory uses relative paths
when referencing the database file(s), add an Env:IHCD directive containing the path to the start of
the relative paths. Make sure that the gtmroutines entry includes InfoHub's PipeCmd directory.

After each execution og gtmConfGenerator, load dbinstances.conf. This loads all newly generated
IDs into the InfoHub so that subsequent executions of gtmConfGenerator can avoid re-using them.

$gtm_dist/mumps -run InfoHub --action=configure
 --file=dbinstances.conf

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX142.txt

The next several steps are based upon using dbinstances.conf with the generated configuration files
and port 161 for the port where the SNMP daemon listens (see the agentAddress line in snmpd.conf).
Please adjust accordingly.

8. Execute the following command to and start InfoHub.

$gtm_dist/mumps -run InfoHub --action=start

For more information, refer to Loading a Configuration File and Starting an InfoHub.

Chapter 6. Appendix B: Reference Implementations GT.M Monitoring

FIS
Page 78, March 13, 2018

r4.5
FIS InfoHub

9. Execute the following command to generate the MIB.

$gtm_dist/mumps -run generatemib >INFOHUB-1-MIB

10. Execute the following command to start the M SNMP Plugin using Subscriber Id 9. Note that the
SNMP Subscriber Descriptor (entry starting with Subscriber:) in server1.conf specifies 9 as the
Subscriber Id.

$gtm_dist/mumps -run IHsnmp --action=start --plugin=9

For more information, refer to Starting the SNMP Plugin.

11. Execute the following command to see the most recent GT.M SysLog message.

snmpget -v2c -c $communitystring -M +$PWD -m INFOHUB-1-MIB -Oaq 127.0.0.1:161
 infohubtestserver1syslogSyslogGTMcurr.0

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX146.txt

Execute the following command to see the next ten most recent GT.M SysLog messages in reverse
chronological order.

snmpbulkget -v2c -c $communitystring -M +$PWD -m INFOHUB-1-MIB -Oaq 127.0.0.1:161
 infohubtestserver1syslogSyslogGTMhist.0

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX147.txt

Execute the following command to see the most recent values for the first ten items from database
"db1"'s "UBG" region.

snmpbulkget -v2c -c $communitystring -M +$PWD -m INFOHUB-1-MIB -Oaq 127.0.0.1:161
 infohubtestdb1RegReplFetchUBGGdregRnamecurr.0

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX148.txt

12. Execute the following commands to check the status of InfoHub and the SNMP Plugin:

$gtm_dist/mumps -run InfoHub --action=status

$gtm_dist/mumps -run IHsnmp --action=status --plugin=9

For more information, refer to Monitoring an InfoHub and Monitoring the SNMP Plugin.

13. Congratulations! Your GT.M Monitoring Reference Implementation is now installed .

The following illustration shows how the GT.M Monitoring Reference Implementation sets up an
InfoHub framework for monitoring your GT.M database.

FileLineSyslogGleaner Operation Chapter 6. Appendix B: Reference Implementations

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 79

FileLineSyslogGleaner Operation

This section explains the operation of the Syslog FileLine Gleaner from the GT.M Monitoring Reference
Implementation and discusses the caveats of gleaning the syslog messages on a system with multiple
GT.M versions in use.

The following summarizes categorization used by the Syslog Gleaner:

1. The gleaner reports any syslog message in the All Messages InfoDictItem. All rules below apply
only to GT.M messages.

2. Unless the PID is invalid, the gleaner reports the message in the All GT.M Messages InfoDictItem.

3. Unless the severity or text is missing, mnemonic is unrecognized, or message arguments could not
be parsed, the gleaner reports the message in any configured message-specific InfoDictItem.

4. Unless the severity or mnemonic is missing, the gleaner reports the message any configured in
severity- or facility- specific InfoDictItems.

When processing GT.M messages, the Syslog Gleaner utilizes preconstructed parsing clues (primarily
for argument extraction) specific to the GT.M version that the gleaner is running on. Because old
messages occasionally get removed or reworded in new releases of GT.M, the Syslog Gleaner may
sometimes be unable to recognize or parse a particular message for the purpose of reporting it in an
appropriate InfoDictItem. This is a possibility when a system has multiple database instances with
different GT.M versions configured to report their messages in the same syslog file. InfoHub logs every
occurrence of unparseable or unrecognizable message in the syslog as well as in the error InfoDictItem,
if one is configured.

Chapter 6. Appendix B: Reference Implementations Uptime and Log File Monitoring

FIS
Page 80, March 13, 2018

r4.5
FIS InfoHub

Depending on the OS and configuration of the syslog utility, certain messages may never reach the
log file due to the use of load-induced skipping or repetition-induced compression techniques; such
messages are thus unavailable for gleaning. For example, the popular rsyslog daemon allows the
reduction of repeated messages via the $RepeatedMsgReduction configuration directive. When in
effect, this mode replaces repeated content with a message like "last line repeated n times." Because
such messages only qualify in the most general category (All Messages InfoDictItem), use message
reduction with the FileLine Syslog Gleaner after considering its impact. Factors to contemplate in this
regard are any rate based Subscriptions and Subscriptions to critical messages such as the ones from
gtmsecshr or having fatal severity.

Uptime and Log File Monitoring

The Uptime and Log File Monitoring (ULFM) Reference Implementation monitors:

• uptime: captures days up and load averages after every 15 seconds from /usr/bin/uptime output.
It generates two notifications–when up days is less than 30 days and when the 15 minutes load
average is less than 1. Note that the notification for up days is generated only once per day because
up days gets updated only once per day. The notification criteria were chosen specifically so that
they generate alerts.

• System log (/var/log/messages): automatically generates a notification when it detect a GT.M error
in the system log.

• Authentication log (/var/log/auth.log): automatically generates a notification when it detects a login
failure in the authentication log.

The following table contains information about all files that are a part of the ULFM Reference
Implementation. You can view these files from the configs subdirectory of your InfoHub distribution

where they reside or download them from the links in the table. You can also click
to download all files of the ULFM Reference Implementation together or open directly from http://
tinco.pair.com/bhaskar/gtm/applications/infohub/ULFM_RI.zip.

Component Name Description Download

InfoHub Main
Configuration File

SimpleMonitor.conf The InfoHub
configuration file
used to configure
the ULFM Reference
Implementation. For
uptime, it defines
InfoDict Items Load01,
Load05, and Load15
to store load averages,
and Days to store up
days. There are two
subscriptions–PatchMe
to send a notification
when Days is greater
than 30 and DontBeLazy

configs/ULFM_RI.zip
configs/SimpleMonitor.conf

Uptime and Log File Monitoring Chapter 6. Appendix B: Reference Implementations

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 81

Component Name Description Download

to send a notification
when Load15 is less
than 1. For log files, it
defines an InfoDict Item
called Anything to hold
the value of line read
from each log file. For
this item, it defines two
subscriptions–AuthFail
to send an alert when
Anything contains ([)
"Fail" and GTMError
to send an alert when
Anythingcontains ([)
"%GTM-E".

FileLine Gleaner LogFileGleaner.m A simple FileLine gleaner
program that reads
every line of the /var/
log/messages and /var/
log/auth.log and returns
value in the form of
9999:line_read_value.
Note that 9999 is the
InfoDict Id for msg.
PreExpr gets invoked
before processing the
log file and defines
configuration options and
PostExpr gets invoked
after completion of
log file processing and
removes configuration
options defined in
PreExpr.

PipeLine Gleaner UptimeGleaner.m A simple PipeLine gleaner
program for the uptime
command. It returns
values in the multiples
of <key>:<value>
in the form of
3030400:Days :3030401:Load:3030405:Load5:3030415:Load15
for every line read from
the uptime output.
PreExpr gets invoked
prior before processing
uptime and defines
configuration options.
PostExpr gets invoked

configs/LogFileGleaner.m
configs/UptimeGleaner.m

Chapter 6. Appendix B: Reference Implementations Uptime and Log File Monitoring

FIS
Page 82, March 13, 2018

r4.5
FIS InfoHub

Component Name Description Download

after completion of
uptimeprocessing and
removes configuration
options defined in
PreExpr. InfoHub invokes
the UptimeGleaner every
15 seconds.

To install the ULFM Reference Implementation, perform the following steps:

1. Install InfoHub and create an InfoHub database. For more information, refer to Installing InfoHub.

2. From the samples directory copy SimpleMonitor.conf to the configs directory.

3. Execute the following command to load the SimpleMonitor.conf configuration file and start
InfoHub.

$ $gtm_dist/mumps -run InfoHub --action=configure
 --file=$ihsrcdir/configs/SimpleMonitor.conf

http://tinco.pair.com/bhaskar/gtm/doc/applications/infohub/print/ih_UNIX151.txt

$ $gtm_dist/mumps -run InfoHub --action=start

For more information, refer to Loading a Configuration File and Starting an InfoHub.

4. Install the FIS GT.M SNMP Plugin. For installation instructions and prerequisites, refer to Installing
the SNMP Plugin.

5. Execute the following command to start the SNMP Plugin using Subscriber Id 404. Note that the
SNMP Subscriber Descriptor (entry starting with Subscriber:) in SimpleMonitor.conf specifies 404
as the Subscriber Id for uptime notifications and 503 as Subscriber Id for log file notifications.

$ $gtm_dist/mumps -run IHsnmp --action=start --plugin=404

For more information, refer to Starting the SNMP Plugin.

6. Execute the following commands to check the status of InfoHub and the SNMP Plugin:

$ $gtm_dist/mumps -run InfoHub --action=status

$ $gtm_dist/mumps -run IHsnmp --action=status --plugin=404

For more information, refer to Monitoring an InfoHub and Monitoring the SNMP Plugin.

7. Congratulations! Your ULFM Reference Implementation is now installed .

The following illustration shows how the ULFM Reference Implementation sets up an InfoHub
framework for monitoring.

Uptime and Log File Monitoring Chapter 6. Appendix B: Reference Implementations

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 83

This page is intentionally left blank.

FIS InfoHub
Page 84, March 13, 2018

FIS
FIS InfoHub

FIS
FIS InfoHub

FIS InfoHub
March 13, 2018, Page 85

Chapter 7. Appendix C: Error Messages

IHABSPATHREQ

IHABSPATHREQ, FileName must have an absolute path

InfoBub Error: This error occurs configuration processing detects a FileLine descriptor entry where the
monitored FileName does not have an absolute path.

Action: Always specify an absolute path for the monitored FileName.

IHACTIVE

The InfoHub dddd is active, operation start is not permitted; yyyy

InfoHub Error: This error indicates the the InfoHub named dddd is active and cannot be started. yyyy
lists the two likely actions.

Action: Please follow the suggestion in yyyy.

IHASSERT

IHASSERT, Assert failed - dddd

InfoHub Error: This error indicates an out of design condition; dddd contains additional context.

Action: Please contact your support channel.

IHAXNFAIL

IHAXNFAIL, An InfoHub service [Publishers|NoInfo|FileLine|PipeLine], ID: cccc, failed to [start|restart|
shutdown]

InfoHub Warning : The parent's request to start, restart or shutdown the target service failed.

Action: This message indicates a failure for a service to respond to a request. Consult the service's log
file to more information.

IHBADALLOC

IHBADALLOC, TmpDBAlloc must be within the range accepted by GDE

InfoHub Error: This error occurs when configuration processing detects an invalid value for
TmpDBAlloc (the initial allocation of the database in the temporary directory–with a predetermined
block size of 4KiB) in the Publisher descriptor entry.

Chapter 7. Appendix C: Error Messages IHBADAPIDIR

FIS
Page 86, March 13, 2018

r4.5
FIS InfoHub

Action: Specify the correct TmpDBAlloc value based on the requirements of the gleaners managed by
this Publisher.

IHBADAPIDIR

IHBADAPIDIR, APIDir must have a valid path

InfoHub Error: This error occurs when configuration processing detects an invalid value for
APIDir which specifies the path to the routines that contain the gleaner plug-in routines. Note the
configuration checks for the syntax rather than access to this directory.

Action: Specify the correct APIDir value based on the requirements of the gleaners managed by this
Publisher.

IHBADCOND4PER

IHBADCOND4PER, When there's a Period, the Condition must contain < or >

InfoHub Error: This error occurs when configuration processing encounters a Subscription with Period
and Condition that does that does not contain "<" or ">".

Action: Ensure that a Subscription descriptor specifying a Period also specifies a valid Condition for a
rate.

IHBADCYCLE

IHBADCYCLE, Cycle must have a numeric value in seconds

InfoHub Error: This error occurs when configuration processing detects a non-numeric value for
CheckCycle in the FileLine descriptor entry.

Action: Always specify a numeric value of seconds for CheckCycle. Note that a value of 0 (the default)
for CheckCycle means InfoHub should not check for a newer file.

IHBADDBPATH

IHBADDBPATH, The global directory probably does not use a fully qualified path for the database file

InfoHub Fatal: The InfoHub can't start because it needs an absolute path to the InfoHub database.

Action: Ensure the global directory used for the InfoHub specifies an absolute path to the database file
holding the InfoHub globals..

IHBADDESCTYPE

IHBADDESCTYPE, Descriptors must have a valid type in the first colon (:) delimited piece

InfoHub Error: This error occurs when configuration processing detects an unrecognized descriptor.

IHBADDPSEP Chapter 7. Appendix C: Error Messages

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 87

Action: Select a valid descriptor. Valid descriptors include InfoHub, Include, Env, InfoDict, InfoDictItem,
Publisher, FileLine, PipeLine, Subscriber, and Subscription.

IHBADDPSEP

IHBADDPSEP, PieceSeparator must be a single character other than ASCII <LF> ($CHAR(10)) or 'VAR' for
gleaner defined; chose a character that is not in the data

InfoHub Error: This error occurs when configuration processing detects that the specified
PieceSeparator is not a single character or the case-insensitive keyword "var" in the FileLine descriptor
entry.

Action: Select a valid single character PieceSeparator; colon (:) must be specified by omitting the
PieceSeparator and accepting the default.

IHBADENV

IHBADENV, EnvVarName must be a legal POSIX name, and the operation provoke no error from /bin/sh

InfoHub Error: This error occurs when configuration processing encounters an Env descriptor having
EnvVarName that is not a legal POSIX name. This error also occurs when the shell reports an error
when configuration processing passes each EnvVarName value to a shell invocation.

Action: Ensure that the EnvVarName is a legal POSIX name. A legal POSIX name consists solely of
ASCII letters, digits, and underscores ("_"), of which the first character must not be a digit. If the error
occurs from the shell, simulate the error condition in the shell environment and rectify the error.

IHBADEXPR

IHBADEXPR, PreExpr, IntExpr and PostExpr must be legal M labelref

Publisher Error: This error occurs when the Publisher detects that the PreExpr, InfoExpr, or PostExpr
return a value which is not in the expected format. The Publisher logs this error and stops processing
the FileLine.

Action: Ensure that the FileLine Gleaner's PreExpr and PostExpr return an empty string and InfoExpr
return values in multiples of <key>:<value>.

IHBADEXT

IHBADEXT, TmpDBExtend must be within the range accepted by GDE

InfoHub Error: This error occurs when configuration processing detects an invalid value for
TmpDBExtend (the extension count) in the Publisher descriptor entry.

Action: Specify the correct TmpDBExtend value based on the expected storage patterns of the gleaners
managed by this Publisher.

Chapter 7. Appendix C: Error Messages IHBADFILE

FIS
Page 88, March 13, 2018

r4.5
FIS InfoHub

IHBADFILE

IHBADFILE, The configuration or an Include File must be found and readable

InfoHub Error: This error occurs when the Configuration File or an Include File is not readable. This
error may be accompanied by additional error context.

Action: Check that the file exists and the authorizations are appropriate; verify the file is correct, for
example, by accessing it using your editor.

IHBADNAME

IHBADNAME, Names must start with '%' or an alpha, contain only alphanumeric characters and not be
more than 32 characters long

InfoHub Error: This error occurs when configuration processing detects a Name in an invalid format.

Action: Ensure that Names (such as a PublisherName) start with an ASCII alphabetic character,
followed by zero to 31 ASCII alphanumeric characters. Except where otherwise explicitly stated,
InfoHub uses case-sensitive Names. FIS recommends short Names for SNMP MIB generation, which
concatenates names.

IHBADPUBLISHER

IHBADPUBLISHER, The Publisher must have a PublisherID defined in the associated InfoDict

InfoHub Error: This error occurs when configuration processing detects a PublisherID that is not
defined..

Action: Ensure that you define the Publisher when using it in a Subscription descriptor.

IHBADSTOREDCONFIG

IHBADSTOREDCONFIG, The InfoHubID identifies a configuration with no Name

InfoHub Error: This error occurs when configuration processing finds that the InfoHubID corresponds
to an InfoHub with no Name.

Action: This indicates the InfoHub configuration has an invalid state, possibly because it was
improperly manipulated. You need to configure with a different InfoHubID, or remove the damaged
InfoHub and its configuration, possibly with a Purge action.

IHBADSUBSCRIBER

IHBADSUBSCRIBER, The Subscriber must have a SubscriberID defined in the associated InfoDict

IHBADTEMPPWD Chapter 7. Appendix C: Error Messages

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 89

InfoHub Error: This error occurs when configuration processing detects a SubscriberID that is not
defined.

Action: Ensure that you define the Subscriber when using it in a Subscription descriptor.

IHBADTEMPPWD

IHBADTEMPPWD, TempPWD must have a valid path

InfoHub Error: This error occurs when configuration processing detects an invalid value for TempPWD
which specifies the path to the directory the InfoHub is to create for working space. Note the
configuration checks for the syntax rather than access to this path.

Action: Specify the correct TempPWD value based on the requirements of this Publisher.

IHBADTIMEOUT

IHBADTIMEOUT, Timout must have a numeric value of seconds

InfoHub Error: This error occurs when configuration processing detects a non-numeric value for
TimeOut in an XLine descriptor entry.

Action: Always specify a numeric value of seconds for TimeOut.

IHCFGNOTACTIVE

IHCFGNOTACTIVE, The configuration for ssss has been deactivated

InfoHub Warning: The ssss NOINFO Subscription has been deactivated by a configuration update

Action: Verify that the configuration change was appropriate.

IHCIRCDICT

IHCIRCDICT, InfoDict/InfoDictItem path parent-child relationships must be free of cycles

InfoHub Error: This error occurs when configuration processing detects a circular path in InfoDict
parent references. Usually this error arises from having the same item name in different InfoDict
domains which have the same parent.

Action: Ensure that there are no circular paths in the InfoDict Domain / Item hierarchy defined in your
configuration file.

IHCLIBADOPT

IHCLIBADOPT, yyyy

Chapter 7. Appendix C: Error Messages IHCONFLOCKED

FIS
Page 90, March 13, 2018

r4.5
FIS InfoHub

yyyy describes the missing or incorrect command line option.

Action: Fix the command line options to match operation.

IHCONFLOCKED

IHCONFLOCKED, Only one process can configure a given InfoHub at the same time

InfoHub Error: This error occurs when configuration processing detects another process holding a lock
on an InfoHub configuration for more than 30 seconds.

Action: Ensure that only one process at a time attempts to configure an given InfoHub.

IHDEADDICT

IHDEADDICT, Every InfoDict must have at least one InfoDictItem

InfoHub Error: This error occurs when configuration processing detects an empty InfoDict.

Action: Ensure complete and correct declarations for InfoDictIDs and InfoDictItems; an InfoDict must
have at least one InfoDictItem.

IHDEBUG

IHDEBUG, dddd

InfoHub Information: This message appears when InfoHub is run in DEBUG mode and dddd is the
debug output.

Action: Take guidance and knowledge.

IHDICTNAMEREQ

IHDICTNAMEREQ, An InfoDict requires a Name

InfoHub Error: This error occurs when configuration processing finds no InfoDict Name.

Action: Ensure that you properly define each InfoDict with a Name and appropriate ID in your
configuration file.

IHDUPDICT

IHDUPDICT, Multiple InfoDicts cannot share the same Name or ID

InfoHub Error: This error occurs when configuration processing detects an attempt to map multiple
InfoDictIDs to one Name.

IHDUPFILELINE Chapter 7. Appendix C: Error Messages

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 91

Action: Ensure that only one InfoDictID maps to one Name.

IHDUPFILELINE

IHDUPFILELINE, A FileLine for a Publisher, cannot share the same Name or ID

InfoHub Error: This error occurs when configuration processing detects more than one FileLine for the
same Publisher has the same Name or ID.

Action: Always specify a unique ID and Name for a FileLine associated with a Publisher.

IHDUPITEM

IHDUPITEM, Multiple InfoDictItems in an InfoDict cannot share the same Name or ID

InfoHub Error: This error occurs when configuration processing detects an attempt to map multiple
InfoDictItemIDs to one Name.

Action: Ensure that each InfoDictItem maps to one InfoDictItemName in your configuration file.

IHDUPPIPELINE

IHDUPPIPELINE, A PipeLine for a Publisher, cannot share the same Name or ID

InfoHub Error: This error occurs when configuration processing detects more than one PipeLine for the
same Publisher has the same Name or ID.

Action: Always specify a unique ID and Name for a PipeLine associated with a Publisher.

IHDUPPUBLISHER

IHDUPPUBLISHER, Multiple Publishers cannot share the same Name or ID

InfoHub Error: This error occurs when configuration processing detects an attempt to map multiple
PublisherIDs to one Name.

Action: Ensure that an InfoDict domain exists for a PublisherName and only one Publisher maps to one
PublisherName.

IHDUPSUBSCRBR

IHDUPSUBSCRBR, Multiple Subscribers associated with a single Publisher cannot share the same Name or
ID

InfoHub Error: This error occurs when configuration processing detects the same ID for more than one
Subscriber associated with a Publisher.

Chapter 7. Appendix C: Error Messages IHDUPSUBSCRPTN

FIS
Page 92, March 13, 2018

r4.5
FIS InfoHub

Action: Ensure that you specify a unique ID for each Subscriber.

IHDUPSUBSCRPTN

IHDUPSUBSCRPTN, An InfoDictItem can have only one Subscription

InfoHub Error: Although a Subscription can have multiple Publishers and Subscribers, an InfoDictItem
can only have one Subscription.

Action: If you need multiple conditions on a single item, consider a custom trigger.

IHENVNOFF

IHENVNOFF, Form Feed (<FF>) characters are not permitted in ENV decriptors

InfoHub Error: This error occurs when configuration processing detects that the Env Descriptor
contains one or more form feed (<FF>) characters, which cannot be used in Env descriptors. (/bin/sh).

Action: reformulate the ENV descriptor to avoid the FF character(s) or switch to using a script
invocation.

IHENVPLACE

IHENVPLACE, ENV descriptors must follow either the InfoHub descriptor or a Publisher descriptor

InfoHub Error: This error occurs when configuration processing encounters an environment descriptor
that does not follow the InfoHub descriptor or a Publisher descriptor.

Action: Ensure that your Env descriptors always follow the InfoHub descriptor or a Publisher
descriptor.

IHETRAPINVOK

IHETRAPINVOK, Error trap invoked

InfoHub Fatal: An InfoHub component encountered a fatal condition.

Action: Look for associated message and for a context file produced by the error for additional
information.

IHEXTRADELIM

IHEXTRADELIM, The descriptor contains more colon (:) delimiters than the descriptor type supports

InfoHub Error: This error occurs when configuration processing detects too many colon (:) delimiters in
a descriptor.

IHFLMISSDTLS Chapter 7. Appendix C: Error Messages

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 93

Action: Check the syntax of the descriptor. Ensure that your descriptor uses colon delimiters only in
appropriate places.

IHFLMISSDTLS

IHFLMISSDTLS, An InfoHub FileLine process might have missed records due to log file rotation (current
inode:dddd, prior inode:pppp

InfoHub Warning: An InfoHub monitors files continuously but only checks whether the file has
been replaced periodically. If the period of it checking for a new file is configured to be long, but
configuration or events cause the file to be replaced on a shorter cycle, the InfoHub may miss the
records in a file which is quickly renamed or replaced. The message lists the inodes of the current,
dddd, and prior, pppp, file.

Action: Ensure that the FileLine Cycle is short enough to minimize or preclude this issue.

IHFLNOROTATE

IHFLNOROTATE, Could not verify the status of file ffff. No rotation performed

InfoHub Warning: The currently monitor file seems to no longer be available but no new file of the
same name seems to be available either

Action: Investigate why the monitored file appears unavailable to the InfoHub monitoring process -
does it exist, are the authorizations, including those on the path appropriate? Adjust as appropriate.

IHGETDTTIMSTRFAIL

IHGETDTTIMSTRFAIL, .msg entry

InfoHub Warning: This error indicates a problem with the GT.M POSIX plugin.

Action: Please check the GT.M POSIX plugin configuration.

IHGETTIMEFAIL

IHGETTIMEFAIL, Could not obtain time; external call to gtmposix.gettimeofday() failed; path to
gtmposix: pppp

InfoHub Error: This error indicates that the call to the GT.M POSIX plugin function gettimeofday (man
gettimeofday for more information) failed. pppp is the path to the External Call Table file.

Action: Please check the GT.M POSIX plugin configuration.

IHGLNRERR

IHGLNRERR, Gleaner error report: eeee

Chapter 7. Appendix C: Error Messages IHHUBDESCREQ

FIS
Page 94, March 13, 2018

r4.5
FIS InfoHub

InfoHub Error: a Gleaner encountered an error described by eeee

Action: Analyze and address the issue described by eeee

IHHUBDESCREQ

IHHUBDESCREQ, A configuration requires a way identify an InfoHub - there is no explicit identification
and defaulting did not find an existing InfoHub

InfoHub Error: If the InfoHub Descriptor is not specified, configuration processing uses the current
value of gtmgbldir to see if the current global directory was previously associated with an InfoHubID,
and, if so, uses the InfoHubID associated with that global directory. If the current global directory path
was never used in association with an InfoHub ID, the configuration fails with the IHHUBDESCREQ
error.

Action: Always specify an InfoHub Descriptor in your configuration file. Otherwise, ensure that the
current global directory was previously associated in an InfoHubID.

IHIDEVEN

IHIDEVEN, An xLine ID must be odd

InfoHub Error: This error indicates that a configuration file attempted to use an even number for either
a FileLine or PipeLine configuration.

Change the ID from an even number to an odd number. Even numbers are reserved for future
development.

IHIDINVALID

IHIDINVALID, An ID must be a non-zero positive GT.M canonical integer no more than 2**31-1

InfoHub Error: This error occurs when configuration processing detects an ID which is not a canonical
GT.M integer, or an XLine process has an inappropriate even ID.

Action: Ensure that your descriptors contains IDs that are canonical GT.M integers, and that XLine IDs
are odd except for PipeLines with a corresponding (one less) odd ID.

IHIDMISMATCH

IHIDMISMATCH, A configuration file cannot modify a preexisting relationship between Name and ID

InfoHub Error: This error occurs when configuration processing detects an attempt to change a
preexisting relationship between Name and ID.

Action: Specify the correct Name and ID and rerun configuration processing.

IHIDORNAMEREQ Chapter 7. Appendix C: Error Messages

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 95

IHIDORNAMEREQ

IHIDORNAMEREQ, A configuration cannot use something that does not have an explict or implicit
reference to an InfoDictItem in an associated InfoDict

InfoHub Error: This error occurs when configuration processing detects there is no Name or ID for
the InfoDict. If InfoDictItemID is specified, configuration processing verifies before configuration
completion that the specified InfoDict domain maps the specified InfoDictItemName; This error also
occurs when configuration processing detects there is no Name or ID for a InfoDictItem.

Action: Ensure your descriptors use an InfoDict Name or ID where required.

IHINFO

IHINFO, mmmm

InfoHub Info: The message indicates some information about the status of the service.

Action: The message mmmm is informational and may be associated with an error.

IHINVKEYFRMGLNR

IHINVKEYFRMGLNR, Invalid key returned from dddd

InfoHub Fatal: A gleaner Expr returned an invalid key as described by dddd

Action: Report to the gleaner maintainer and provide the context information from error and the file
that this error produces.

IHINVPROCCONF

IHINVPROCCONF, Invalid process configuration: yyyy

InfoHub Error: xLines emit this error message when the configuration produces an incorrect value for
yyyy.

Action: Consult the configuration file for correct values. Use the verbose and reload the configuration.
If the configuration routine notes no flaws, contact support.

IHJOBENVRESTOREFAIL

IHJOBENVRESTOREFAIL, Could not restore dddd to 'yyyy' errno=zzzz

InfoHub Fatal Message: The InfoHub JOB command framework was unable to restore the environment
variable dddd to yyyy. The error code is zzzz. Because this error does not leave the InfoHub or
Publisher service in an unintended state the service is shutdown.

Chapter 7. Appendix C: Error Messages IHJOBENVSETFAIL

FIS
Page 96, March 13, 2018

r4.5
FIS InfoHub

Action: Please check the environment variable limit and increase it. If that does not work, consider
eliminating unneeded environment variables.

IHJOBENVSETFAIL

IHJOBENVSETFAIL, Could not set dddd to 'yyyy' errno=zzzz

InfoHub Warning: The InfoHub JOB command framework was unable to set the environment variable
dddd to yyyy. The error code is zzzz. This error is followed by an IHJOBFAIL from either a InfoHub or
Publisher service.

Action: Please check the environment variable limit and increase it. If that does not work, consider
eliminating unneeded environment variables.

IHJOBMSG

IHJOBMSG, InfoHubJob framework message: dddd

InfoHub Information: The dddd portion of the message is describes some state of the InfoHub JOB
framework

Action: None

IHJOBNORTN

IHJOBNORTN, Cannot JOB target label dddd because it does not exist

InfoHub Warning: The target label dddd does not exist. This should be followed by an IHJOBFAIL
message from either the InfoHub or Publisher service.

Action: Please review the log files and contact support.

IHJOBSTARTDIR

IHJOBSTARTDIR, Unable to create the JOB commands starting directory dddd; Error code yyyy

InfoHub Warning: The InfoHub JOB command framework was unable to create the target directory
dddd. yyyy is the error returned from the underlying operating system. This should be followed by an
IHJOBFAIL message from either the InfoHub or Publisher service.

Action: Please review the path to ensure that it has the correct permissions.

IHMETANOINFO

IHMETANOINFO, A META type InfoDictItem cannot have a NoInfo Subscription

IHMETANOSUB Chapter 7. Appendix C: Error Messages

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 97

InfoHub Error: This error occurs when configuration processing detects an item with "META" type
with a corresponding NoInfo Subscription.

Action: META nodes act to aggregate multiple conditions into a single Subscription. Because META
nodes use triggers and don't store data, and NoInfo Subscriptions use processes that periodically poll
data, attempting to use a NoInfo Subscription on a META node produces an IHMETANOINFO error.
NoInfo Subscriptions must refer to items with a type other than META or NONE.

IHMETANOSUB

IHMETANOSUB, A META type InfoDictItem must have a Subscription

InfoHub Error: This error occurs when configuration processing detects an item with "META" type but
no corresponding Subscription.

Action: META nodes act to aggregate multiple conditions into a single Subscription. Ensure that you
always specify a corresponding Subscription for a "META" type InfoDictItem.

IHMETANOTSUPRTD

IHMETANOTSUPRTD, META nodes not currently supported in PipeLines - all subsequent META nodes
silently ignored

InfoHub Error: The current PipeLine does not support META type nodes.

Action: META type nodes provide a means to avoid large numbers of triggers by using gleaner logic
to create a common trigger point for a class of events. If you have a use for this in a PipeLine, please
contact FIS.

IHMISSINGCONF

IHMISSINGCONF, Configuration missing for [PipeLine|FileLine]

InfoHub Fatal: The PipeLine of FileLine could not find its own configuration.

Action: Shutdown the InfoHub and verify that the configuration has the correct values, using the --
action=extract. Reload the configuration and restart. If the configuration routine notes no flaws or the
process exits with the same failure message, contact support.

IHMISSINGPARMS

IHMISSINGPARMS, Key startup parameters are missing for [InfoHubMain|Publisher|NoInfo]; The supplied
parameter(s) dddd

InfoHub Error: An InfoHub service process was started without the appropriate parameters. The dddd
portion of the message indicates the service process and passed parameters.

Chapter 7. Appendix C: Error Messages IHMISSINGPROC

FIS
Page 98, March 13, 2018

r4.5
FIS InfoHub

Action: If the service process was not started manually or programmatically, contact support. If started
manually or programmatically please check the parameters.

IHMISSINGPROC

IHMISSINGPROC, Process nnnn (ID:dddd PID:pppp) did not respond to $ZSIGPROC() from xxxx

InfoHub Warning: The service process nnnn with ID dddd and PID pppp did not respond to a signal
from the parent service xxxx

Action: These errors typically indicate that an error occurred in the service process nnnn. Please refer
to that process's log file for more diagnostic information and contact support. This message is also
present if the process was killed.

IHMKTIMEFAIL

IHMKTIMEFAIL, Could not convert time; external call to gtmposix.mktime() failed; path to gtmposix:
pppp

InfoHub Error: This error indicates that the call to the GT.M POSIX plugin functionmktime (man
mktime for more information) failed. pppp is the path to the External Call Table file.

Action: Please check the GT.M POSIX plugin configuration.

IHNAMEMISMATCH

IHNAMEMISMATCH, This descriptor has an ID and Name that don't match another definition for the item

InfoHub Error: Configuration processing produces this error when the descriptor provides both the
InfoHubID and the InfoHubName, and the ID is already in the configuration, but the specified Name
does not match the existing Name.

Action:You cannot change the name of an existing InfoHub - you must either remove it, possibly with a
Purge action, or create a new InfoHub with the desired name.

IHNAMEREQ

IHNAMEREQ, While configuration logic can generate IDs for Names, you must specify names except for
InfoHubs and Subscribers

InfoHub Error: This error occurs when configuration processing cannot resolve an ID to an existing
name. Descriptor syntax commonly provides fields for specifying both a name and an ID. When the
descriptor contains only one of the two, the configuration process tries to resolve the other. If there is
only a name, which does not currently exist, it generates an ID. This error occurs when there is only an
ID (except for the InfoHub and Subscriber descriptors where it generates a random name) and InfoHub
cannot resolve that ID to an existing name.

IHNOACK Chapter 7. Appendix C: Error Messages

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 99

Action: Either specify both ID and name in the descriptor specification, or ensure that those entries that
do not have a name can resolve based on other InfoDict and InfoDictItem descriptors.

IHNOACK

IHNOACK, The InfoHub dddd (PID:pppp) did not acknowledge the request after ssss

InfoHub Error: The InfoHub dddd, process ID pppp, did not acknowledge a request from the command
line. This message is printed after ssss seconds.

Action: Check the InfoHub's status. If the InfoHubMain process is not active contact support with
information from the log file.

IHNOCHILD

IHNOCHILD, The service ssss has no child configurations defined

InfoHub Warning: The service ssss was not configured with services to monitor.

Action: Check the configuration file to ensure that the service ssss has processes defined for it.

IHNOCOMPLETE

IHNOCOMPLETE, The InfoHub dddd (PID:pppp) did not complete the request after tttt

InfoHub Error: The InfoHub dddd, process ID pppp, did not acknowledge a request from the command
line. This message is printed after tttt seconds.

Action: Check the InfoHub's status. If the InfoHubMain process is not active contact support with
information from the log file.

IHNODUMMYGLD

IHNODUMMYGLD, Unable to create a global directory for environment descriptor testing: gggg

InfoHub Error: This is a configuration error message that indicates that the configuration routine was
unable to create a temporary global directory while validating the configuration file.

Action: If the message gggg does not indicate the source of the problem, contact support.

IHNOERRSETUP

IHNOERRSETUP, Error handler was not setup tttt

InfoHub Warning: A Subscription implemented with trigger tttt, but the xLine process that set off the
trigger had not registered an error handler.

Chapter 7. Appendix C: Error Messages IHNOGBLDIR

FIS
Page 100, March 13, 2018

r4.5
FIS InfoHub

Action: Contact support for dealing with this issue.

IHNOGBLDIR

IHNOGBLDIR, The value of $gtmgbldir or --gbldir 'gggg' does not point to a valid global directory

InfoHub Error: The InfoHub command line could not use gggg as a global directory.

Action: Check that the supplied path points to a valid global directory.

IHNOINFOINVPER

IHNOINFOINVPER, A NoInfo Condition must have a valid numeric Period in seconds

Configure Error: This error occurs when configuration processing detects a non-numeric Period for the
"NoInfo" condition.

Action: Ensure that you specify Always specify a numeric value of seconds for Period in Subscription
descriptor entry for a "NoInfo" condition .

IHNOINFONOVAL

IHNOINFONOVAL,A NoInfo Condition must have a Subscription

InfoHub Error: This error occurs when configuration processing encounters a Value for a "Noinfo"
condition in the Subscription descriptor entry.

Action: Ensure that there is no Value specified for the "Noinfo" condition.

IHNORESTART

IHNORESTART, Service nnnn:ID=dddd,InfoHubID=iiii will not be restarted

InfoHub Warning: The InfoHub service named nnnn with ID dddd belonging to the InfoHub ID iiii will
not be restarted due to five failures in the past 5 minutes.

Action: Any services that fail five time within five minutes typically indicates a configuration error.
Check the full status listing of InfoHub services and the log files for information on why the service is
failing.

IHNOSUBSCRIBER

IHNOSUBSCRIBER, There are no subscribers listed for ssss

InfoHub Warning: A Subscription ssss condition was met, but there are no Subscribers to notify.

Action: Check and remediate the configuration.

IHNOSUBSCRIPTION Chapter 7. Appendix C: Error Messages

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 101

IHNOSUBSCRIPTION

IHNOSUBSCRIPTION, There are no subscriptions defined for the NoInfo service ID dddd

InfoHub Warning: The NoInfo service has no subscriptions defined for it.

Action: Please check the configuration for the NoInfo subscription. If there are no NoInfo subscriptions,
please contact support.

IHNOSUCHID

IHNOSUCHID, There is no Info Hub ID or name nnnn

InfoHub Error: The messages indicates that there is no InfoHub named nnnn or with the ID nnnn.

Action: Use the list command line action, --action=list, to list the names and numeric IDs of all
configured InfoHubs.

IHNOTBINSH

IHNOTBINSH, The format of the information in the Env Descriptor must be acceptable to /bin/sh

InfoHub Error: InfoHub uses /bin/sh to establish its environments, but the ENV descriptor contained a
command that /bin/sh rejected.

Action: Use /bin/sh to develop an appropriate command and modify the descriptor accordingly.

IHNOTCONFIGURED

IHNOTCONFIGURED, The current global directory gggg does not have an active InfoHub configuration

InfoHub Error: The InfoHub command line detected that the global directory gggg does not have an
active configuration

Action: Please verify that the target global directory has an InfoHub configured.

IHNOTINTRIG

IHNOTINTRIG, Not inside a trigger

InfoHub Warning: InfoHub implements most Subscriptions with triggers, and supplies standard trigger
logic to address many Subscription conditions. This error indicates that logic intended for use in a
Subscription trigger was invoked by something other than a trigger.

Action: Consult custom plugin code for direct invocation of the routine InfoHubNotify. If none is found,
please contact support

Chapter 7. Appendix C: Error Messages IHNOTRUNNING

FIS
Page 102, March 13, 2018

r4.5
FIS InfoHub

IHNOTRUNNING

IHNOTRUNNING, The InfoHub nnnn is not running: tttt

InfoHub Error: The messages indicates that there is no InfoHub named nnnn is not running. The
message tttt indicates the last time it was stopped.

Action: Start the InfoHub prior to executing commands for it.

IHNOXLINE4PUB

IHNOXLINE4PUB, Publisher pppp has no xLine, .msg entry

InfoHub Error: The Publisher with ID pppp has no xLine processes and so cannot contribute useful
information.

Action: Remove the Publisher if is no needed or appropriately configure a FileLine and/or PipeLine to
generate information for this Publisher.

IHODDFLIDREQ

IHODDFLIDREQ, An even PipeLine descriptor must have a one-less odd PipeLine descriptor

InfoHub Error: Even PipeLine descriptors define a separate process to monitor the stderr of the process
created for the PIPE device. Such descriptors must have the same PipeCMD and an even ID one higher
than the descriptor for the main PipeLine process.

Action: Check your configuration and adjust as appropriate.

IHONEINFOHUBREQ

IHONEINFOHUBREQ, A configuration must have no more than one InfoHub Descriptor

InfoHub Error: This error occurs when configuration processing encounters more than one InfoHub
Descriptor.

Ensure that you specify only one InfoHub Descriptor per configuration file.

IHORPHNDMETA

IHORPHNDMETA, Orphaned meta update to nnnn

InfoHub Warning: This message indicates that an xLine was unable to file a META node.

Action: For META information to be filed, the data must be filed under a real node. Please check the
InfoDict configuration hierarchy.

IHPARENTUNDEF Chapter 7. Appendix C: Error Messages

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 103

IHPARENTUNDEF

IHPARENTUNDEF, A Parent InfoDict must exist

InfoHub Error: A ParentInfoDictID indicates a Parent InfoDict domain contains an item definition for
the Name of this InfoDict domain. This error occurs when configuration processing detects there is no
definition for the specified Parent Name.

Action: Ensure that the parent Name has a InfoDict entry in the configuration file.

IHPARSERROR

IHPARSERROR, An error occurred while parsing the comment line. Please refer to the
following message for an explanation:

InfoHub Error: The InfoHub command line parser encountered an error.

Action: Please see the associated text and fix the parameter.

IHPATNOVAL

IHPATNOVAL, Because they have a patcode with the operator, pattern Conditions must not have a value

InfoHub Error: This error occurs when configuration processing detects a value with a pattern
condition. The patcode following the pattern operator is not a value and so needs to be part of the
condition.

Action: When using a pattern condition, place the patcode right after the pattern operator (?) in the
condition field and leave the Value field empty.

IHPIPECMDMISMATCH

IHPIPECMDMISMATCH, An even PipeLine descriptor must have the same Command as the
one-less odd PipeLine descriptor

InfoHub Error: This error occurs when configuration processing detects an an even PipeLine descriptor
having a different PipeCmd than its corresponding odd-numbered PipeLine descriptor.

Action: Ensure that you specify the same PipeCmd for every combination of odd and immediately
subsequent even PipeLine descriptors.

IHPIPECMDREQ

IHPIPECMDREQ, PipeCMD is a required field for a PipeLine Descriptor

InfoHub Error: A PipeLine descriptor must include a command to invoke the PIPE device co-process.

Chapter 7. Appendix C: Error Messages IHPUBLISHERREQ

FIS
Page 104, March 13, 2018

r4.5
FIS InfoHub

Action: Add the appropriate command to the PipeLine descriptor.

IHPUBLISHERREQ

IHPUBLISHERREQ, FileLine and PipeLine definitions require a Publisher

InfoHub Error: A FileLine or PipeLine descriptor must explicitly or implicitly refer to a Publisher
descriptor by ID or Name.

Action: Review your configuration and adjust appropriately.

IHSEQNOMISMATCH

IHSEQNOMISMATCH, Sequence number for "SeqNoToTime" mapping is behind that of the actual value

InfoHub Warning: This warning indicates that the private copy of the sequence-number-to-time is
behind the actual value stored in the database. This is an out-of-design condition for which the xLine
takes corrective action to avoid failure.

Action: Inspect the database and custom plugin code for incorrect SETs/KILLs of InfoHubInfo nodes.
Contact support if custom code is not the source of the problem.

IHSETENVFAIL

IHSETENVFAIL, Could not setenv or unsetenv; external call to gtmposix.setenv() or gtmposix.unsetenv()
failed; xxxx

InfoHub Fatal: A service process was unable to set or unset an environment variable.

Action: Please ensure that nothing has consumed the allotted environment variable memory space.

IHSIGNALVALFAIL

IHSIGNALVALFAIL, Could not obtain SIGUSR1; external call to gtmposix.signalval() failed

InfoHub Fatal: A InfoHub component could not get the platform specific value for SIGUSR1 from the
gtmposix plugin.

Action: Please check to ensure that the gtmposix plugin was installed correctly.

IHSOMEEXPRREQ

IHSOMEEXPRREQ, FileLine and PipeLine descriptors must specify at least one of PreExpr, InfoExpr and
PostExpr

InfoHub Error: This error occurs when configuration processing detects the FileLine descriptor does not
specify at least one of PreExpr, InfoExpr and PostExpr.

IHSRVCLCKFAIL Chapter 7. Appendix C: Error Messages

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 105

Action: Always specify at least one of PreExpr, InfoExpr, or PostExpr in the FileLine descriptor.

IHSRVCLCKFAIL

IHSRVCLCKFAIL, Could not acquire the service lock

InfoHub Fatal: This message indicates that another service already holds the service lock.

Action: Use LKE to list all MUMPS process holding locks for the InfoHub and perform a full status
listing. If no conflict can be found, contact support.

IHSUBCONDINV

IHSUBCONDINV, A Subscription descriptor must specify a Condition using a GT.M binary operator, except
concatenation, or the text 'NOINFO'

Configure Error: This error occurs when configuration processing encounters an invalid Condition in
the Subscription descriptor entry.

Action: Ensure that Condition specifies a GT.M binary operator excluding concatenation and non-
relational arithmetic operators, or the (case-insensitive) text: "Noinfo" which configures detection of a
period during which the specified item receives no new data.

IHSUBINVPER

IHSUBINVPER, Period in a Subscription must be a numeric value in seconds

InfoHub Error: This error occurs when configuration processing encounters a non-numeric Period
value for rate checking in the subscription descriptor entry.

Action:Always specify a numeric value of seconds for Period.

IHSUBSCRPTNNOPATH

IHSUBSCRPTNNOPATH, A Subscription must have a valid path from a Publisher to the subscribed
InfoDictItem

InfoHub Error: A Subscription must identify an InfoDictItem which in an InfoDict that has a path,
possibly using parent relationships to a FileLine or PipeLine to a Publisher.

Action: Review your configuration and adjust appropriately.

IHSUBSPROB

IHSUBSPROB, IHSUBSPROB, Subscription must have a suitable comparison, but cccc isn't valid

InfoHub Error: The comparison value is not a valid expression or patcode

Chapter 7. Appendix C: Error Messages IHSUBVALREQLIT

FIS
Page 106, March 13, 2018

r4.5
FIS InfoHub

Action: Correct the Subscription Value

IHSUBVALREQLIT

IHSUBVALREQLIT, Subscriptions except for pattern conditions and NoInfo must have a value to use with
the Condition

InfoHub Error: This error occurs when configuration processing encounters an invalid Value in the
Subscription descriptor entry.

Action: Ensure that Value specifies a GT.M literal which the Subscriber relates to the Item; it is required
except for pattern match and "Noinfo" conditions.

IHTMPDBFAIL

IHTMPDBFAIL, Publisher pppp (SEQNO:ssss) was unable to setup the temporary directory

InfoHub Error: Publisher pppp, configuration sequence number ssss, could not create and populate the
temporary directory.

Action: Check the path and the authorization for all elements in the path and creak or modify the
authorizations of all of its directories. Alternatively change the configuration to use an appropriate path
for the Publisher TempPWD.

IHTNONENOSUB

IHTNONENOSUB, InfoDictItems with a type 'NONE' cannot support a Subscription

InfoHub Error: This error occurs when configuration processing detects a Subscription on an item with
a type of "NONE".

Action: NONE items serve to construct paths where there is no data associated with some node on the
path. Either avoid trying place a Subscription on a NONE type InfoDictItem, or configure the item to
have data and an appropriate Type.

IHTRIGFAIL

IHTRIGFAIL, Trigger tttt encountered an error, please see ffff for details

InfoHub Warning: Subscription trigger tttt failed and produced a context dump in file ffff.

Action: Examine the context file and analyze the failure characteristics, which might include schema
dependencies and coding problems; consult your trigger maintainer as appropriate.

IHTRIGINSTALLFAIL

IHTRIGINSTALLFAIL, Installation of the trigger definition file ffff failed

IHUNKNOWNERR Chapter 7. Appendix C: Error Messages

FIS InfoHub
FIS InfoHub

r4.5
March 13, 2018, Page 107

InfoHub Fatal: An attempt to revise the Subscription triggers as defined in file ffff failed to load.

Action: Examine any accompanying messages or if necessary try the load with MUPIP TRIGGER or
$ZTRIGGER() do get diagnostic messages. Consult your trigger maintainer as appropriate.

IHUNKNOWNERR

IHUNKNOWNERR, Supplied error mnemonic (mmmm) was not found

InfoHub Error: The error message used to generate an error is not known to the InfoHub.
InfoHub error messages are listed in InfoHubErrorMessages.m. Plugin error messages are listed in
IHPluginErrorMessage.m.

Action: Check custom or plugin code for the message mmmm. If not found, please contact support.

IHUNRESPPROC

IHUNRESPPROC, Must re-signal pppp because it failed to respond in a timely manner

InfoHub Warning: Process with PID pppp seems to not acknowledge an action request.

Action: Check the process status, possibly with gtmpcat and take appropriate action. Note that xLine
services spend a large amount of time processing data and may not respond in a timely fashion.

IHZEROIDINVALID

IHZEROIDINVALID, Zero (0) is not a valid ID

InfoHub Error: This error occurs when configuration processing detects an ID a value of ZERO (0).

Action: Ensure that the descriptor ID is a canonical positive integer from 1 to 2**31-1.

IHZLINKFAIL

IHZLINKFAIL, Could not zlink rrrr, Please check the configured $ZROUTINES zzzz

InfoHub Error: The InfoHub was unable to zlink the file rrrr. It does not exist in the current $ZROutines
zzzz.

Action: Verify that the routine rrrr exists in the $ZROutine paths.

This page is intentionally left blank.

FIS InfoHub
Page 108, March 13, 2018

FIS
FIS InfoHub

	FIS InfoHub
	Table of Contents
	Chapter 1. About This Manual
	How to Read This Manual

	Chapter 2. FIS InfoHub
	InfoHub Overview
	InfoHub Concepts

	Chapter 3. InfoHub Tasks
	Installing InfoHub
	Obtaining an InfoHub Distribution
	Before You Begin
	InfoHub Installation Procedure
	InfoHub Environment Setup
	InfoHub Product Routines and Reference Implementations

	Operating an InfoHub
	Loading a Configuration File
	Listing all InfoHubs
	Extracting a Configuration File
	Starting an InfoHub
	Monitoring (Checking) an InfoHub
	Restarting an InfoHub
	Shutting down an InfoHub
	Rundown an InfoHub
	Troubleshooting (Debugging) an InfoHub
	Purging an InfoHub

	Chapter 4. Configuring an InfoHub
	Defining an InfoHub Descriptor
	Defining an Include Descriptor
	Defining an Env Descriptor
	Defining an InfoDict Domain Descriptor
	Defining an InfoDictItem Descriptor
	Defining a Publisher Descriptor
	Defining a FileLine Descriptor
	Defining a PipeLine Descriptor
	Defining a Subscriber Descriptor
	Defining a Subscription Descriptor
	Writing an xLine Gleaner

	Chapter 5. Appendix A: FIS GT.M SNMP Plugin
	Prerequisites
	SNMP Plugin Overview
	Installing the SNMP Plugin
	Operating the SNMP Plugin
	Starting the SNMP Plugin
	Monitoring (Checking) an SNMP Plugin
	Shutdown an SNMP Plugin
	Performing a GET Request (snmpget)
	Performing a GETNEXT Request (snmpgetnext)
	Exploring the InfoHub MIB (snmptranslate)
	Listening for Alerts (snmptrapd)

	Chapter 6. Appendix B: Reference Implementations
	GT.M Monitoring
	

	FileLineSyslogGleaner Operation
	Uptime and Log File Monitoring

	Chapter 7. Appendix C: Error Messages
	IHABSPATHREQ
	IHACTIVE
	IHASSERT
	IHAXNFAIL
	IHBADALLOC
	IHBADAPIDIR
	IHBADCOND4PER
	IHBADCYCLE
	IHBADDBPATH
	IHBADDESCTYPE
	IHBADDPSEP
	IHBADENV
	IHBADEXPR
	IHBADEXT
	IHBADFILE
	IHBADNAME
	IHBADPUBLISHER
	IHBADSTOREDCONFIG
	IHBADSUBSCRIBER
	IHBADTEMPPWD
	IHBADTIMEOUT
	IHCFGNOTACTIVE
	IHCIRCDICT
	IHCLIBADOPT
	IHCONFLOCKED
	IHDEADDICT
	IHDEBUG
	IHDICTNAMEREQ
	IHDUPDICT
	IHDUPFILELINE
	IHDUPITEM
	IHDUPPIPELINE
	IHDUPPUBLISHER
	IHDUPSUBSCRBR
	IHDUPSUBSCRPTN
	IHENVNOFF
	IHENVPLACE
	IHETRAPINVOK
	IHEXTRADELIM
	IHFLMISSDTLS
	IHFLNOROTATE
	IHGETDTTIMSTRFAIL
	IHGETTIMEFAIL
	IHGLNRERR
	IHHUBDESCREQ
	IHIDEVEN
	IHIDINVALID
	IHIDMISMATCH
	IHIDORNAMEREQ
	IHINFO
	IHINVKEYFRMGLNR
	IHINVPROCCONF
	IHJOBENVRESTOREFAIL
	IHJOBENVSETFAIL
	IHJOBMSG
	IHJOBNORTN
	IHJOBSTARTDIR
	IHMETANOINFO
	IHMETANOSUB
	IHMETANOTSUPRTD
	IHMISSINGCONF
	IHMISSINGPARMS
	IHMISSINGPROC
	IHMKTIMEFAIL
	IHNAMEMISMATCH
	IHNAMEREQ
	IHNOACK
	IHNOCHILD
	IHNOCOMPLETE
	IHNODUMMYGLD
	IHNOERRSETUP
	IHNOGBLDIR
	IHNOINFOINVPER
	IHNOINFONOVAL
	IHNORESTART
	IHNOSUBSCRIBER
	IHNOSUBSCRIPTION
	IHNOSUCHID
	IHNOTBINSH
	IHNOTCONFIGURED
	IHNOTINTRIG
	IHNOTRUNNING
	IHNOXLINE4PUB
	IHODDFLIDREQ
	IHONEINFOHUBREQ
	IHORPHNDMETA
	IHPARENTUNDEF
	IHPARSERROR
	IHPATNOVAL
	IHPIPECMDMISMATCH
	IHPIPECMDREQ
	IHPUBLISHERREQ
	IHSEQNOMISMATCH
	IHSETENVFAIL
	IHSIGNALVALFAIL
	IHSOMEEXPRREQ
	IHSRVCLCKFAIL
	IHSUBCONDINV
	IHSUBINVPER
	IHSUBSCRPTNNOPATH
	IHSUBSPROB
	IHSUBVALREQLIT
	IHTMPDBFAIL
	IHTNONENOSUB
	IHTRIGFAIL
	IHTRIGINSTALLFAIL
	IHUNKNOWNERR
	IHUNRESPPROC
	IHZEROIDINVALID
	IHZLINKFAIL

